DOI QR코드

DOI QR Code

Prediction Model for the Risk of Scapular Winging in Young Women Based on the Decision Tree

  • Gwak, Gyeong-tae (Kinetic Ergocise Based on Movement Analysis Laboratory) ;
  • Ahn, Sun-hee (Kinetic Ergocise Based on Movement Analysis Laboratory) ;
  • Kim, Jun-hee (Kinetic Ergocise Based on Movement Analysis Laboratory) ;
  • Weon, Young-soo (Kinetic Ergocise Based on Movement Analysis Laboratory) ;
  • Kwon, Oh-yun (Kinetic Ergocise Based on Movement Analysis Laboratory)
  • 투고 : 2020.01.16
  • 심사 : 2020.03.04
  • 발행 : 2020.05.20

초록

Background: Scapular winging (SW) could be caused by tightness or weakness of the periscapular muscles. Although data mining techniques are useful in classifying or predicting risk of musculoskeletal disorder, predictive models for risk of musculoskeletal disorder using the results of clinical test or quantitative data are scarce. Objects: This study aimed to (1) investigate the difference between young women with and without SW, (2) establish a predictive model for presence of SW, and (3) determine the cutoff value of each variable for predicting the risk of SW using the decision tree method. Methods: Fifty young female subjects participated in this study. To classify the presence of SW as the outcome variable, scapular protractor strength, elbow flexor strength, shoulder internal rotation, and whether the scapula is in the dominant or nondominant side were determined. Results: The classification tree selected scapular protractor strength, shoulder internal rotation range of motion, and whether the scapula is in the dominant or nondominant side as predictor variables. The classification tree model correctly classified 78.79% (p = 0.02) of the training data set. The accuracy obtained by the classification tree on the test data set was 82.35% (p = 0.04). Conclusion: The classification tree showed acceptable accuracy (82.35%) and high specificity (95.65%) but low sensitivity (54.55%). Based on the predictive model in this study, we suggested that 20% of body weight in scapular protractor strength is a meaningful cutoff value for presence of SW.

키워드

참고문헌

  1. Kibler WB, Sciascia A. Current concepts: scapular dyskinesis. Br J Sports Med 2010;44(5):300-5. https://doi.org/10.1136/bjsm.2009.058834
  2. Kibler WB, Sciascia A, Wilkes T. Scapular dyskinesis and its relation to shoulder injury. J Am Acad Orthop Surg 2012;20(6):364-72. https://doi.org/10.5435/JAAOS-20-06-364
  3. Lukasiewicz AC, McClure P, Michener L, Pratt N, Sennett B. Comparison of 3-dimensional scapular position and orientation between subjects with and without shoulder impingement. J Orthop Sports Phys Ther 1999;29(10):574-83. https://doi.org/10.2519/jospt.1999.29.10.574
  4. Kibler WB, Ludewig PM, McClure PW, Michener LA, Bak K, Sciascia AD. Clinical implications of scapular dyskinesis in shoulder injury: the 2013 consensus statement from the 'scapular summit'. Br J Sports Med 2013;47(14):877-85. https://doi.org/10.1136/bjsports-2013-092425
  5. Hardwick DH, Beebe JA, McDonnell MK, Lang CE. A comparison of serratus anterior muscle activation during a wall slide exercise and other traditional exercises. J Orthop Sports Phys Ther 2006;36(12):903-10. https://doi.org/10.2519/jospt.2006.2306
  6. Ha SM, Kwon OY, Cynn HS, Lee WH, Park KN, Kim SH, et al. Comparison of electromyographic activity of the lower trapezius and serratus anterior muscle in different arm-lifting scapular posterior tilt exercises. Phys Ther Sport 2012;13(4):227-32. https://doi.org/10.1016/j.ptsp.2011.11.002
  7. Park KM, Cynn HS, Kwon OY, Yi CH, Yoon TL, Lee JH. Comparison of pectoralis major and serratus anterior muscle activities during different push-up plus exercises in subjects with and without scapular winging. J Strength Cond Res 2014;28(9):2546-51. https://doi.org/10.1519/JSC.0000000000000443
  8. Kobesova A, Dzvonik J, Kolar P, Sardina A, Andel R. Effects of shoulder girdle dynamic stabilization exercise on hand muscle strength. Isokinet Exerc Sci 2015;23(1):21-32. https://doi.org/10.3233/IES-140560
  9. Schreiber AL, Abramov R, Fried GW, Herbison GJ. Expanding the differential of shoulder pain: Parsonage-Turner syndrome. J Am Osteopath Assoc 2009;109(8):415-22.
  10. Muscolino JE. The muscular system manual: the skeletal muscles of the human body. 4th ed. St. Louis: Mosby; 2016;152-4.
  11. Borich MR, Bright JM, Lorello DJ, Cieminski CJ, Buisman T, Ludewig PM. Scapular angular positioning at end range internal rotation in cases of glenohumeral internal rotation deficit. J Orthop Sports Phys Ther 2006;36(12):926-34. https://doi.org/10.2519/jospt.2006.2241
  12. Novak CB. Upper extremity work-related musculoskeletal disorders: a treatment perspective. J Orthop Sports Phys Ther 2004;34(10):628-37. https://doi.org/10.2519/jospt.2004.34.10.628
  13. Burn MB, McCulloch PC, Lintner DM, Liberman SR, Harris JD. Prevalence of scapular dyskinesis in overhead and nonoverhead athletes: a systematic review. Orthop J Sports Med 2016;4(2):2325967115627608.
  14. Cieminski CJ, Kelly SM, Nawrocki TJ, Indrelie AJ, Klaers H, Stelzmiller MR. Comparison of shoulder internal rotation passive range of motion in various positions in nonathletic persons and the establishment of normative values for the sidelying position. J Shoulder Elbow Surg 2016;25(9):1523-31. https://doi.org/10.1016/j.jse.2016.01.007
  15. Macedo LG, Magee DJ. Differences in range of motion between dominant and nondominant sides of upper and lower extremities. J Manipulative Physiol Ther 2008;31(8):577-82. https://doi.org/10.1016/j.jmpt.2008.09.003
  16. Seabra P, Van Eck CF, Sa M, Torres J. Are professional handball players at risk for developing a glenohumeral internal rotation deficit in their dominant arm? Phys Sportsmed 2017;45(2):77-81.
  17. Torres RR, Gomes JL. Measurement of glenohumeral internal rotation in asymptomatic tennis players and swimmers. Am J Sports Med 2009;37(5):1017-23. https://doi.org/10.1177/0363546508329544
  18. Oyama S, Myers JB, Wassinger CA, Daniel Ricci R, Lephart SM. Asymmetric resting scapular posture in healthy overhead athletes. J Athl Train 2008;43(6):565-70. https://doi.org/10.4085/1062-6050-43.6.565
  19. Shiri R, Varonen H, Heliovaara M, Viikari-Juntura E. Hand dominance in upper extremity musculoskeletal disorders. J Rheumatol 2007;34(5):1076-82.
  20. Hong J, Barnes MJ, Leddon CE, Van Ryssegem G, Alamar B. Reliability of the sitting hand press-up test for identifying and quantifying the level of scapular medial border posterior displacement in overhead athletes. Int J Sports Phys Ther 2011;6(4):306-11.
  21. de Oliveira VMA, Beltrao NB, dos Passos MHP, da Silva JP, Pitangui ACR, de Araujo RC. Validity and reliability of an instrument to assess the posterior scapular displacement. Int J Phys Ther Rehab 2015;1:106.
  22. Plafcan DM, Turczany PJ, Guenin BA, Kegerreis S, Worrell TW. An objective measurement technique for posterior scapular displacement. J Orthop Sports Phys Ther 1997;25(5):336-41. https://doi.org/10.2519/jospt.1997.25.5.336
  23. Weon JH, Kwon OY, Cynn HS, Lee WH, Kim TH, Yi CH. Realtime visual feedback can be used to activate scapular upward rotators in people with scapular winging: an experimental study. J Physiother 2011;57(2):101-7. https://doi.org/10.1016/S1836-9553(11)70020-0
  24. Kantardzic' M. Data mining: concepts, models, methods and algorithms. New York: Wiley-Interscience; 2002;189-91.
  25. Mendelek F, Caby I, Pelayo P, Kheir RB. The application of a classification-tree model for predicting low back pain prevalence among hospital staff. Arch Environ Occup Health 2013;68(3):135-44. https://doi.org/10.1080/19338244.2012.663010
  26. Ramezankhani A, Pournik O, Shahrabi J, Khalili D, Azizi F, Hadaegh F. Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study. Diabetes Res Clin Pract 2014;105(3):391-8. https://doi.org/10.1016/j.diabres.2014.07.003
  27. Krishna OB, Maiti J, Ray PK, Mandal S. Assessment of risk of musculoskeletal disorders among crane operators in a steel plant: a data mining-based analysis. Hum Factors Ergon Manuf Serv Ind 2015;25(5):559-72. https://doi.org/10.1002/hfm.20575
  28. Zurada J. Classifying the risk of work related low back disorders due to manual material handling tasks. Expert Syst Appl 2012;39(12):11125-34. https://doi.org/10.1016/j.eswa.2012.03.043
  29. Zurada J, Karwowski W, Marras W. Classification of jobs with risk of low back disorders by applying data mining techniques. Occup Ergon 2004;4:291-305. https://doi.org/10.3233/OER-2004-4406
  30. Herland M, Khoshgoftaar TM, Wald R. A review of data mining using big data in health informatics. J Big Data 2014;1(1):2. https://doi.org/10.1186/2196-1115-1-2
  31. Du WY, Huang TS, Hsu KC, Lin JJ. Measurement of scapular medial border and inferior angle prominence using a novel scapulometer: a reliability and validity study. Musculoskelet Sci Pract 2017;32:120-6. https://doi.org/10.1016/j.msksp.2017.08.004
  32. Jung SH, Hwang UJ, Kim JH, Gwak GT, Kwon OY. Effects of horizontal shoulder abduction and adduction on the activity and strength of the scapular protractors. J Electromyogr Kinesiol 2017;37:155-9. https://doi.org/10.1016/j.jelekin.2017.10.011
  33. Kim HA, Hwang UJ, Jung SH, Ahn SH, Kim JH, Kwon OY. Comparison of shoulder strength in males with and without myofascial trigger points in the upper trapezius. Clin Biomech (Bristol, Avon) 2017;49:134-8. https://doi.org/10.1016/j.clinbiomech.2017.09.001
  34. Jung SH, Kwon OY, Yi CH, Cho SH, Jeon HS, Weon JH, et al. Predictors of dysfunction and health-related quality of life in the flexion pattern subgroup of patients with chronic lower back pain: The STROBE study. Medicine (Baltimore) 2018;97(29):e11363. https://doi.org/10.1097/MD.0000000000011363
  35. Allaire J. RStudio: integrated development environment for R. Paper presented at: The R User Conference, useR! 2011; 2011 Aug 16-18; Coventry, UK: University of Warwick, 2011. p. 14.
  36. Timofeev R. Classification and regression trees (CART) theory and applications. Berlin, Humboldt University, Master's thesis. 2004.
  37. Kim JS, Ahn DH, Park DH, Oh JS. Electromyographic activity of the serratus anterior and pectoralis major during isometric scapular protraction at different resistance intensities in subjects with and without a winged scapula. Clin Biomech (Bristol, Avon) 2019;61:199-204. https://doi.org/10.1016/j.clinbiomech.2018.12.018
  38. Kim YG, Kang MH, Kim JW, An DH, Oh JS. Shoulder girdle protraction strength and dynamic performance of the upper limb in individuals with scapular winging: A preliminary study. Isokinet Exerc Sci 2015;23(1):33-40. https://doi.org/10.3233/IES-140561
  39. Magermans DJ, Chadwick EK, Veeger HE, van der Helm FC. Requirements for upper extremity motions during activities of daily living. Clin Biomech (Bristol, Avon) 2005;20(6):591-9. https://doi.org/10.1016/j.clinbiomech.2005.02.006
  40. Namdari S, Yagnik G, Ebaugh DD, Nagda S, Ramsey ML, Williams GR Jr, et al. Defining functional shoulder range of motion for activities of daily living. J Shoulder Elbow Surg 2012;21(9):1177-83. https://doi.org/10.1016/j.jse.2011.07.032
  41. Wang KJ, Makond B, Wang KM. An improved survivability prognosis of breast cancer by using sampling and feature selection technique to solve imbalanced patient classification data. BMC Med Inform Decis Mak 2013;13:124. https://doi.org/10.1186/1472-6947-13-124

피인용 문헌

  1. Decision Tree Algorithm-Based Model and Computer Simulation for Evaluating the Effectiveness of Physical Education in Universities vol.2020, 2020, https://doi.org/10.1155/2020/8868793