DOI QR코드

DOI QR Code

Numerical simulation of set-up around shaft of XCC pile in clay

  • Liu, Fei (School of Civil Engineering, Chongqing University) ;
  • Yi, Jiangtao (School of Civil Engineering, Chongqing University) ;
  • Cheng, Po (School of Civil Engineering, Chongqing University) ;
  • Yao, Kai (School of Qilu Transportation, Shandong University)
  • Received : 2020.03.14
  • Accepted : 2020.04.24
  • Published : 2020.06.10

Abstract

This paper conducts a complicated coupled effective stress analysis of X-section-in-place concrete (XCC) pile installation and consolidation processes using the dual-stage Eulerian-Lagrangian (DSEL) technique incorporating the modified Cam-clay model. The numerical model is verified by centrifuge data and field test results. The main objective of this study is to investigate the shape effect of XCC pile cross-section on radial total stress, excess pore pressure and time-dependent strength. The discrepancies of the penetration mechanism and set-up effects on pile shaft resistance between the XCC pile and circular pile are discussed. Particular attention is placed on the time-dependent strength around the XCC pile shaft. The results show that soil strength improved more significantly close to the flat side compared with the concave side. Additionally, the computed ultimate shaft resistance of XCC pile incorporating set-up effects is 1.45 times that of the circular pile. The present findings are likely helpful in facilitating the incorporation of set-up effects into XCC pile design practices.

Keywords

Acknowledgement

The authors wish to express their thanks to the very competent reviewers for the valuable comments and suggestions. The research described in this paper was financially supported by the Natural Science Foundation of China (Grant/Award Numbers: 51778091), the graduate scientific research and innovation foundation of Chongqing, China (Grant/Award Numbers: CYS18023).

References

  1. API (2002), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design, American Petroleum Institute, Washington, U.S.A.
  2. Azari, B., Fatahi, B. and Khabbaz, H. (2015), "Numerical analysis of vertical drains accelerated consolidation considering combined soil disturbance and visco-plastic behaviour", Geomech. Eng., 8(2), 187-220. https://doi.org/10.12989/gae.2015.8.2.187.
  3. Basu, P., Prezzi, M., Salgado, R. and Chakraborty, T. (2014), "Shaft resistance and setup factors for piles jacked in clay", J. Geotech. Geoenviron. Eng., 140(3), 04013026. https://doi.org/10.1061/(ASCE)GT.19435606.0001018.
  4. Burns, S. and Mayne, P. (1998), "Monotonic and dilatory pore-pressure decay during piezocone tests in clay", Can. Geotech. J., 35(6), 1063-1073. https://doi.org/10.1139/cgj-35-6-1063.
  5. Ceccato, F., Beuth, L., Vermeer, P.A. and Simonini, P. (2016), "Two-phase material point method applied to the study of cone penetration", Comput. Geotech., 80, 440-452. https://doi.org/10.1016/j.compgeo.2016.03.003.
  6. Chai, J.C., Hossain, M.J., Yuan, D.J., Shen, S.L. and Carter, J.P. (2016), "Pore pressures induced by piezocone penetration", Can. Geotech. J., 53(3), 540-550. https://doi.org/10.1139/cgj-2015-0206.
  7. Ding, X.M., Luan, L.B., Liu, H.L., Zheng, C.J., Zhou, H. and Qin, H.Y. (2020), "Performance of X-section cast-in-place concrete piles for highway constructions over soft clays", Transport. Geotech., 22, 100310. https://doi.org/10.1016/j.trgeo.2019.100310.
  8. Hamann, T., Qiu, G. and Grabe, J. (2015), "Application of a Coupled Eulerian-Lagrangian approach on pile installation problems under partially drained conditions", Comput. Geotech., 63, 279-290. https://doi.org/ 10.1016/j.compgeo.2014.10.006.
  9. Kim, T., Kim, N, K., Tumay, M.T. and Lee, W. (2007), "Spatial distribution of excess pore-water pressure due to piezocone penetration in overconsolidated clay", J. Geotech. Geoenviron. Eng., 133(6), 674-683. https://doi.org/10.1061/(ASCE)10900241(2007)133:6(674).
  10. Kong, G.Q., Zhou, H., Ding, X.M. and Cao, Z.H. (2015), "Measuring effects of X-section pile installation in soft clay", Proc. Inst. Civ. Eng. Geotech. Eng., 168(4), 296-305. https://doi.org/10.1680/geng.14.00048.
  11. Lee, J., Kim, M. and Lee, S. (2009), "Reliability analysis and evaluation of LRFD resistance factors for CPT-based design of driven piles", Geomech. Eng., 1(1), 17-34. https://doi.org/10.12989/gae.2009.1.1.017.
  12. Li, C., Zou, J.F. and Li, L. (2020), "A novel approach for predicting lateral displacement caused by pile installation", Geomech. Eng., 20(2), 147-154. https://doi.org/10.12989/gae.2020.20.2.147.
  13. Li, J.P., Li, L., Sun, D.A. and Gong, W.B. (2017), "Time-dependent bearing capacity of jacked piles in K0 consolidated clay based on CPTU tests", Chin. J. Geotech. Eng., 39(2), 193-200. https://doi.org/10.11779/CJGE201702001.
  14. Li, L., Li, J., and Sun, D.A (2016), "Anisotropically elasto-plastic solution to undrained cylindrical cavity expansion in K0-consolidated clay", Comput. Geotech., 73, 83-90. https://doi.org/10.1016/j.compgeo.2015.11.022.
  15. Li, L., Li, J., Sun, D.A and Gong, W. (2017a), "Analysis of time-dependent bearing capacity of a driven pile in clayey soils by total stress method", Int. J. Geomech., 17(7), 04016156. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000860.
  16. Li, L., Li, J., Sun, D.A. and Gong, W. (2017b), "Semi-analytical approach for time-dependent load-settlement response of a jacked pile in clay strata", Can. Geotech. J., 54(12), 1682-1692. https://doi.org/10.1139/cgj-2016-0561.
  17. Li, L., Li, J., Sun, D.A. and Gong, W. (2019), "A feasible approach to predicting time-dependent bearing performance of jacked piles from CPTu measurements", Acta Geotechnica, 1-18. https://doi.org/10.1007/s11440-019-00875-x.
  18. Lim, Y.X., Tan, S. and Phoon, K. (2018), "Application of press-replace method to simulate undrained cone penetration", Int. J. Geomech., 18(7), 04018066. https://doi.org/10.1061/(asce)gm.1943-5622.0001186.
  19. Liu, H.L., Zhou, H. and Kong, G.Q. (2014), "XCC pile installation effect in soft soil ground: A simplified analytical model", Comput. Geotech., 62, 268-282. https://doi.org/10.1016/j.compgeo.2014.07.007.
  20. Liu, J.W., Zhang, Z.M., Yu, F. and Xie, Z.Z. (2012), "Case history of installing instrumented jacked open-ended piles", J. Geotech. Geoenviron. Eng., 138(7), 810-820. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000638.
  21. Lorenzo, R., Cunha, R.P.D., Neto, M.P.C. and Nairn, J.A. (2016), "Numerical simulations of deep penetration problems using the material point method", Geomech. Eng., 11(1), 59-76. https://doi.org/10.12989/gae.2016.11.1.059.
  22. Lv, Y.R. and Zhang, D.D. (2018), "Geometrical effects on the load transfer mechanism of pile groups: Three-dimensional numerical analysis", Can. Geotech. J., 55(5), 749-757. https://doi.org/10.1139/cgj-2016-05181.
  23. Lv, Y.R., Liu, H.L., Ding, X.M and Kong, G.Q. (2012), "Field tests on bearing characteristics of X-section pile composite foundation", J. Perform. Constr. Fac., 26(2), 180-189. https://doi.org/10.1061/(ASCE)CF. 1943-5509.0000247.
  24. Lv, Y.R., Liu, H.L., Ng, C.W.W., Ding, X.M. and Gunawan, A. (2014a), "Three-dimensional numerical analysis of the stress transfer mechanism of XCC piled raft foundation", Comput. Geotech., 55, 365-377. https://doi.org/10.1016/j.compgeo.2013.09.019.
  25. Lv, Y.R., Liu, H.L., Ng, C.W.W., Gunawan, A. and Ding, X.M (2014b), "A modified analytical solution of soil stress distribution for XCC pile foundations", Acta Geotechnica, 9(3), 529-546. https://doi.org/10.1007/s11440-013-0280-1.
  26. Mahmoodzadeh, H., Wang, D. and Randolph, M. (2015), "Interpretation of piezoball dissipation testing in clay", Geotechnique, 65(10), 831-842. https://doi.org/10.1680/jgeot.14.P.213.
  27. Ni, P., Mangalathu, S., Mei, G. and Zhao, Y. (2017), "Permeable piles: An alternative to improve the performance of driven piles", Comput. Geotech., 84, 78-87. https://doi.org/10.1016/j.compgeo.2016.11.021.
  28. Ni, P., Mangalathu, S., Mei, G. and Zhao, Y. (2018), "Laboratory investigation of pore pressure dissipation in clay around permeable piles", Can. Geotech. J., 55(9), 1257-1267. https://doi.org/10.1139/cgj-2017-0180.
  29. Rezania, M., Mousavi Nezhad, M., Zanganeh, H., Castro, J. and Sivasithamparam, N. (2017), "Modeling pile setup in natural clay deposit considering soil anisotropy, structure, and creep effects: Case study", Int. J. Geomech., 17(3), 04016075. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000774.
  30. Silvestri, V. and Abousamra, G. (2012), "Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified cam clay", Geomech. Eng., 4(1), 19-37. https://doi.org/10.12989/gae.2012.4.1.019.
  31. Sun, G.C, Kong, G.Q., Liu, H.L and Amenuvor, A.C. (2017), "Vibration velocity of X-section cast-in-place concrete (XCC) pile-raft foundation model for a ballastless track", Can. Geotech. J., 54(9), 1340-1345. https://doi.org/10.1139/cgj-2015-0623.
  32. Ullah, S.N., Hou, L.F., Satchithananthan, U., Chen, Z. and Gu, H. (2018), "A 3D RITSS approach for total stress and coupled-flow large deformation problems using ABAQUS", Comput. Geotech., 99, 203-215. https://doi.org/10.1016/j.compgeo.2018.01.018.
  33. Wang, D. and Bienen, B. (2016), "Numerical investigation of penetration of a large-diameter footing into normally consolidated kaolin clay with a consolidation phase", Geotechnique, 66(11), 947-952. https://doi.org/10.1680/jgeot. 15.P.048.
  34. Wang, S., Ni, P., Chen, Z. and Mei, G. (2019), "Consolidation solution of soil around a permeable pipe pile", Mar. Georesour. Geotechnol., 1-9. https://doi.org/10.1080/1064119X.2019.1655119.
  35. Xu, X.T., Liu, H.L and Lehane, B.M. (2006), "Pipe pile installation effects in soft clay", Proc. Inst. Civ. Eng. Geotech. Eng., 159(4), 285-296. https://doi.org/10.1680/geng.2006.159.4.285.
  36. Yi, J.T., Lee, F.H., Goh, S.H., Zhang, X.Y. and Wu, J. (2012), "Eulerian finite element analysis of excess pore pressure generated by spudcan installation into soft clay", Comput. Geotech., 42, 157-170. https://doi.org/10.1016/j.compgeo.2012.01.006.
  37. Yi, J.T., Zhao, B., Li, Y.P., Yang, Y., Lee, F.H., Goh, S.H., Zhang. X.Y. and Wu, J. (2014), "Post-installation pore-pressure changes around spudcan and long-term spudcan behaviour in soft clay", Comput. Geotech., 56, 133-147. https://doi.org/ 10.1016/j.compgeo.2012.01.006.
  38. Zhang, D.D., Lv, Y.R., Liu, H.L. and Wang, M.Y. (2015), "An analytical solution for load transfer mechanism of XCC pile foundations", Comput. Geotech., 67, 223-228. https://doi.org/10.1016/j.compgeo.2015.03.006.
  39. Zhou, H., Liu, H.L, Yuan, J.R. and Chu, J. (2019), "Numerical simulation of XCC pile penetration in undrained clay", Comput. Geotech., 106, 18-41. https://doi.org/10.1016/j.compgeo.2018.10.009.
  40. Zhou, H., Yuan, J.R., Liu, H.L. and Kong, G.Q. (2018), "Analytical model for evaluating XCC pile shaft capacity in soft soil by incorporating penetration effects", Soils Found., 58(5), 1093-1112. https://doi.org/10.1016/j.sandf.2018.04.005.

Cited by

  1. Characterization of Model Uncertainty for the Vertical Pullout Capacity of Helical Anchors in Cohesive Soils vol.8, pp.10, 2020, https://doi.org/10.3390/jmse8100738
  2. Numerical modelling of the long-term effects of XCC piling in fine-grained soil vol.26, pp.1, 2020, https://doi.org/10.12989/gae.2021.26.1.027
  3. Determination of the ultimate consolidation settlement of jack-up spudcan footings embedded in clays vol.236, 2020, https://doi.org/10.1016/j.oceaneng.2021.109509
  4. Characterising the model uncertainty of ISO methods for punch-through capacity prediction vol.174, pp.5, 2020, https://doi.org/10.1680/jgeen.21.00003
  5. A large deformation finite element analysis of uplift behaviour for helical anchor in spatially variable clay vol.141, 2020, https://doi.org/10.1016/j.compgeo.2021.104542