References
- Abbas, I.A. and Marin M.I. (2017), "Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating", Phys. E Low-Dimen. Syst. Nanostruct., 87, 254-260. https://doi.org/10.1016/j.physe.2016.10.048.
- Abo-Dahab, SM., Abd-Alla, A.M. and Kilany, A.A. (2019), "Effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids by using the Lord-Shulman and dual-phase-lag models", Appl. Math. Mech., 40(8), 1135-1154. https://doi.org/10.1007/s10483-019-2504-6.
- Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
- Arifa, S., Singh, B., Jahangir, A. and Muhammad, N. (2017), "Plane harmonic waves in rotating medium under the effect of micro-temperature and dual-phase-lag thermoelasticity", UPB Sci. Bull. Ser. D, 79(3), 13-25.
- Bhatti, M.M., Zeeshan, A., Tripathi, D. and Ellahi, R. (2018), "Thermally developed peristaltic propulsion of magnetic solid practicles in biorheological fluids", Ind. J. Phys., 92(4), 423-430 https://doi.org/10.1007/s12648-017-1132-x.
- Bhatti, M.M., Shahid, A., Abbas, T., Alamri, S.Z. and Ellahi, R. (2020), "Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate", Processes, 8(3), 328-348. https://doi.org/10.3390/pr8030328.
- Chandrasekharaiah, D.S. (1987), "Plane waves in a rotating elastic solid with voids", Int. J. Eng. Sci., 25(5), 591-596. https://doi.org/10.1016/0020-7225(87)90109-1.
- Choudhuri, S.K.R. (2007), "On a thermoelastic three phase lag model", J. Therm. Stress., 30, 231-238. https://doi.org/10.1080/01495730601130919.
- Cicco, S.D. and Diaco, M. (2002), "A theory of thermoelastic materials with voids without energy dissipation", J. Therm. Stress., 25(5), 493-503. https://doi.org/10.1080/01495730252890203.
- Dhaliwal, R.S. and Wang, J. (1994), "Domain of influence theorem in the theory of elastic materials with voids", Int. J. Eng. Sci., 32, 1823-1828. https://doi.org/10.1016/0020-7225(94)90111-2.
- Eringen, A.C. (1966), "Linear theory of micropolar elasticity", J. Math. Mech., 15, 909-924.
- Eringen, A.C. (1970), Foundations of Micropolar Thermoelasticity, Course of Lectures No. 23, CISM Udine, Springer.
- Ellahi, R., Zeeshain, A., Hussain, F. and Abbas, T. (2018), "Study of shiny film coating on multi-fluid flows of a rotating disk suspended with nano-sized silver and gold particles: A comparative analysis", Coatngs, 8(12), 422-448. https://doi.org/10.3390/coatings8120422.
- El-Karamany, A.S. and Ezzat, M.A. (2013), "On the three-phaselag linear micropolar thermoelasticity theory", Eur. J. Mech. A Solids, 40, 198-208. https://doi.org/10.1016/j.euromechsol.2013.01.011.
- Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimension medium with voids", Geomech. Eng., 21(1), 85-93. https://doi.org/10.12989/gae.2020.21.1.085.
- Iesan, D. (1986), "A theory of thermoelastic materials with voids", Acta Mech., 60, 67-89. https://doi.org/10.1007/BF01302942.
- Itu, C., Ochsner, A., Vlase, S. and Marin, M.I. (2019), "Improved rigidity of composite circular plates through radial ribs", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 233(8), 1585-1593. https://doi.org/10.1177/1464420718768049.
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Adda Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
- Lata, P. and Kaur, I. (2018a), "Effect of hall current in transversely isotropic magneto-thermoelastic rotating medium with fractional order heat Transfer due to normal force", Adv. Mater. Res., 7(3), 203-220. https://doi.org/10.12989/amr.2018.7.3.203.
- Lata, P. and Kaur, I. (2018b), "Effect of inclined load on transversely isotropic magneto thermo-elastic rotating solid with time harmonic source", Adv. Mater. Res., 8(2), 83-102. https://doi.org/10.12989/amr.2019.8.2.083.
- Lata, P. and Singh, S. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., 33(1), 123-131. https://doi.org/10.12989/scs.2019.33.1.123.
- Marin, M. (1998), "A temporally evolutionary equation in elasticity of micropolar bodies with voids", Bull. Ser. A Appl. Math. Phys., 60, 3-12.
- Marin, M.I. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Contin. Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.
- Marin, M.I., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpathian J. Math., 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
- Marin, M.I., Vlase, S., Ellahi, R. and Bhatti, M.M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 863. https://doi.org/10.3390/sym11070863.
- Mirzaei, M.M.H., Arefi, M. and Loghman, A. (2019), "Creep analysis of a rotating functionally graded simple blade: Steady state analysis", Steel Compos. Struct., 33(3), 463-472. https://doi.org/10.12989/scs.2019.33.3.463.
- Nunziato, J.W. and Cowin, S.C. (1979), "A nonlinear theory of elastic materials with voids", Arch. Rational Chanics and Anal., 72(2) 175-201. https://doi.org/10.1007/BF00249363.
- Othman, M.I.A., Hasona, W.M. and Eraki, E.E.M. (2014), "The effect of initial stress on generalized thermoelastic medium with three-phase-lag model under temperature dependent properties", Can. J. Phys., 92(5), 448-457. https://doi.org/10.1139/cjp-2013-0461.
- Othman, M.I.A., Hasona, W.M. and Abd-Elaziz, E.M. (2015), "Effect of rotation and initial stress on generalized micropolar thermoelastic medium with three-phase-lag", J. Comput. Theor. Nanosci., 12(9), 2030-2040. https://doi.org/10.1166/jctn.2015.3983.
- Othman, M.I.A. and Eraki, E.E.M. (2017), "Generalized magnetothermoelastic half space with diffusion under initial stress using three-phase-lag model", Mech. Based Des. Struct. Mach., 45(2), 145-159. http://doi.org/10.1080/15397734.2016.1152193.
- Othman, M.I.A., Said, S.M. and Marin, M. (2019), "A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with threephase-lag model", Int. J. Numer. Meth. Heat Fluid Flow, 29(12), 4788-4806. http://doi.org/10.1108/HFF-04-2019-0359.
- Puri, P. and Cowin, S.C. (1985), "Plane waves in linear elastic materials with voids", J. Elast., 15, 167-185. https://doi.org/10.1007/BF00041991.
- Quintanilla, R. and Racke, R. (2008), "A note on stability in threephase-lag heat conduction", Int. J. Heat Mass Transfer, 51, 24- 29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045.
- Scarpetta, E. (1995), "Well posedness theorems for linear elastic materials with voids", Int. J. Eng. Sci., 33(2), 151-161. https://doi.org/10.1016/0020-7225(94)00060-W.
- Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quart. Appl. Math., 31, 115-125. https://doi.org/10.1090/qam/99708.
- Shahid, A., Huang, H., Bhatti, M.M., Zhang, L. and Ellahi, R. (2020), "Numerical investigation on the swimming of gyrotactic microorganisms in nanofluids through porous medium over a stretched surface", Mathematics, 8(3), 380-397. https://doi.org/10.3390/math8030380.
- Sur, A. and Kanoria, M. (2014), "Thermoelastic interaction in a viscoelastic functionally graded half-space under three-phaselag model", Eur. J. Comput. Mech., 23(5-6), 179-198. https://doi.org/10.1080/17797179.2014.978143.
- Sur, A. and Kanoria, M. (2015), "Three-phase-lag elasto-thermodiffusive response in an elastic solid under hydrostatic pressure", Int. J. Adv. Appl. Math. Mech., 3(2), 121-137.
- Tzou, D.Y. (1995), "A unified field approach for heat conduction from macro to micro scales", J. Heat Transf., 117, 8-16. https://doi.org/10.1115/1.2822329.