DOI QR코드

DOI QR Code

Micropolar thermoelastic medium with voids under the effect of rotation concerned with 3PHL model

  • Othman, Mohamed I.A. (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Alharbi, Amnah M. (Department of Mathematics, Faculty of Science, Taif University) ;
  • Al-Autabi, Al-Anoud M. Kh. (Department of Mathematics, Faculty of Science, Taif University)
  • Received : 2020.03.19
  • Accepted : 2020.04.20
  • Published : 2020.06.10

Abstract

This paper aims to investigate the effect of rotation on a micropolar thermoelastic medium with voids problem. The problem is assessed according to three-phase-lag model. The normal mode analysis used to obtain the analytical expressions of the considered variables. The non-dimensional displacement, temperature, Micro rotation, the change in the volume fraction field, and stress of the material are obtained and illustrated graphically. Comparisons are made with the results predicted by two theories; namely three- phase-lag model (3PHL) and Green-Naghdi theory of type III (G-N III). The considered variables were plotted for different values of the rotation parameter, the phase-lag of heat flux and the phase-lag of temperature. The numerical results reveal that the rotation and the phase-lag times significantly influence the distribution of the field quantities. Some particular cases of interest are deduced from the present investigation.

Keywords

References

  1. Abbas, I.A. and Marin M.I. (2017), "Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating", Phys. E Low-Dimen. Syst. Nanostruct., 87, 254-260. https://doi.org/10.1016/j.physe.2016.10.048.
  2. Abo-Dahab, SM., Abd-Alla, A.M. and Kilany, A.A. (2019), "Effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids by using the Lord-Shulman and dual-phase-lag models", Appl. Math. Mech., 40(8), 1135-1154. https://doi.org/10.1007/s10483-019-2504-6.
  3. Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
  4. Arifa, S., Singh, B., Jahangir, A. and Muhammad, N. (2017), "Plane harmonic waves in rotating medium under the effect of micro-temperature and dual-phase-lag thermoelasticity", UPB Sci. Bull. Ser. D, 79(3), 13-25.
  5. Bhatti, M.M., Zeeshan, A., Tripathi, D. and Ellahi, R. (2018), "Thermally developed peristaltic propulsion of magnetic solid practicles in biorheological fluids", Ind. J. Phys., 92(4), 423-430 https://doi.org/10.1007/s12648-017-1132-x.
  6. Bhatti, M.M., Shahid, A., Abbas, T., Alamri, S.Z. and Ellahi, R. (2020), "Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate", Processes, 8(3), 328-348. https://doi.org/10.3390/pr8030328.
  7. Chandrasekharaiah, D.S. (1987), "Plane waves in a rotating elastic solid with voids", Int. J. Eng. Sci., 25(5), 591-596. https://doi.org/10.1016/0020-7225(87)90109-1.
  8. Choudhuri, S.K.R. (2007), "On a thermoelastic three phase lag model", J. Therm. Stress., 30, 231-238. https://doi.org/10.1080/01495730601130919.
  9. Cicco, S.D. and Diaco, M. (2002), "A theory of thermoelastic materials with voids without energy dissipation", J. Therm. Stress., 25(5), 493-503. https://doi.org/10.1080/01495730252890203.
  10. Dhaliwal, R.S. and Wang, J. (1994), "Domain of influence theorem in the theory of elastic materials with voids", Int. J. Eng. Sci., 32, 1823-1828. https://doi.org/10.1016/0020-7225(94)90111-2.
  11. Eringen, A.C. (1966), "Linear theory of micropolar elasticity", J. Math. Mech., 15, 909-924.
  12. Eringen, A.C. (1970), Foundations of Micropolar Thermoelasticity, Course of Lectures No. 23, CISM Udine, Springer.
  13. Ellahi, R., Zeeshain, A., Hussain, F. and Abbas, T. (2018), "Study of shiny film coating on multi-fluid flows of a rotating disk suspended with nano-sized silver and gold particles: A comparative analysis", Coatngs, 8(12), 422-448. https://doi.org/10.3390/coatings8120422.
  14. El-Karamany, A.S. and Ezzat, M.A. (2013), "On the three-phaselag linear micropolar thermoelasticity theory", Eur. J. Mech. A Solids, 40, 198-208. https://doi.org/10.1016/j.euromechsol.2013.01.011.
  15. Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimension medium with voids", Geomech. Eng., 21(1), 85-93. https://doi.org/10.12989/gae.2020.21.1.085.
  16. Iesan, D. (1986), "A theory of thermoelastic materials with voids", Acta Mech., 60, 67-89. https://doi.org/10.1007/BF01302942.
  17. Itu, C., Ochsner, A., Vlase, S. and Marin, M.I. (2019), "Improved rigidity of composite circular plates through radial ribs", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 233(8), 1585-1593. https://doi.org/10.1177/1464420718768049.
  18. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Adda Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  19. Lata, P. and Kaur, I. (2018a), "Effect of hall current in transversely isotropic magneto-thermoelastic rotating medium with fractional order heat Transfer due to normal force", Adv. Mater. Res., 7(3), 203-220. https://doi.org/10.12989/amr.2018.7.3.203.
  20. Lata, P. and Kaur, I. (2018b), "Effect of inclined load on transversely isotropic magneto thermo-elastic rotating solid with time harmonic source", Adv. Mater. Res., 8(2), 83-102. https://doi.org/10.12989/amr.2019.8.2.083.
  21. Lata, P. and Singh, S. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., 33(1), 123-131. https://doi.org/10.12989/scs.2019.33.1.123.
  22. Marin, M. (1998), "A temporally evolutionary equation in elasticity of micropolar bodies with voids", Bull. Ser. A Appl. Math. Phys., 60, 3-12.
  23. Marin, M.I. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Contin. Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.
  24. Marin, M.I., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpathian J. Math., 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
  25. Marin, M.I., Vlase, S., Ellahi, R. and Bhatti, M.M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 863. https://doi.org/10.3390/sym11070863.
  26. Mirzaei, M.M.H., Arefi, M. and Loghman, A. (2019), "Creep analysis of a rotating functionally graded simple blade: Steady state analysis", Steel Compos. Struct., 33(3), 463-472. https://doi.org/10.12989/scs.2019.33.3.463.
  27. Nunziato, J.W. and Cowin, S.C. (1979), "A nonlinear theory of elastic materials with voids", Arch. Rational Chanics and Anal., 72(2) 175-201. https://doi.org/10.1007/BF00249363.
  28. Othman, M.I.A., Hasona, W.M. and Eraki, E.E.M. (2014), "The effect of initial stress on generalized thermoelastic medium with three-phase-lag model under temperature dependent properties", Can. J. Phys., 92(5), 448-457. https://doi.org/10.1139/cjp-2013-0461.
  29. Othman, M.I.A., Hasona, W.M. and Abd-Elaziz, E.M. (2015), "Effect of rotation and initial stress on generalized micropolar thermoelastic medium with three-phase-lag", J. Comput. Theor. Nanosci., 12(9), 2030-2040. https://doi.org/10.1166/jctn.2015.3983.
  30. Othman, M.I.A. and Eraki, E.E.M. (2017), "Generalized magnetothermoelastic half space with diffusion under initial stress using three-phase-lag model", Mech. Based Des. Struct. Mach., 45(2), 145-159. http://doi.org/10.1080/15397734.2016.1152193.
  31. Othman, M.I.A., Said, S.M. and Marin, M. (2019), "A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with threephase-lag model", Int. J. Numer. Meth. Heat Fluid Flow, 29(12), 4788-4806. http://doi.org/10.1108/HFF-04-2019-0359.
  32. Puri, P. and Cowin, S.C. (1985), "Plane waves in linear elastic materials with voids", J. Elast., 15, 167-185. https://doi.org/10.1007/BF00041991.
  33. Quintanilla, R. and Racke, R. (2008), "A note on stability in threephase-lag heat conduction", Int. J. Heat Mass Transfer, 51, 24- 29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045.
  34. Scarpetta, E. (1995), "Well posedness theorems for linear elastic materials with voids", Int. J. Eng. Sci., 33(2), 151-161. https://doi.org/10.1016/0020-7225(94)00060-W.
  35. Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quart. Appl. Math., 31, 115-125. https://doi.org/10.1090/qam/99708.
  36. Shahid, A., Huang, H., Bhatti, M.M., Zhang, L. and Ellahi, R. (2020), "Numerical investigation on the swimming of gyrotactic microorganisms in nanofluids through porous medium over a stretched surface", Mathematics, 8(3), 380-397. https://doi.org/10.3390/math8030380.
  37. Sur, A. and Kanoria, M. (2014), "Thermoelastic interaction in a viscoelastic functionally graded half-space under three-phaselag model", Eur. J. Comput. Mech., 23(5-6), 179-198. https://doi.org/10.1080/17797179.2014.978143.
  38. Sur, A. and Kanoria, M. (2015), "Three-phase-lag elasto-thermodiffusive response in an elastic solid under hydrostatic pressure", Int. J. Adv. Appl. Math. Mech., 3(2), 121-137.
  39. Tzou, D.Y. (1995), "A unified field approach for heat conduction from macro to micro scales", J. Heat Transf., 117, 8-16. https://doi.org/10.1115/1.2822329.