Acknowledgement
The research described in this paper was not financially supported by the Natural Science Foundation.
References
- Abbas, I.A. (2014a), "Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity", J. Comput. Theor. Nanosci., 11(4), 987-992. https://doi.org/10.1166/jctn.2014.3454
- Abbas, I.A. (2014b), "Eigenvalue approach for an unbounded medium with a spherical cavity based upon two-temperature generalized thermoelastic theory", J. Mech. Sci. Tech., 28(10), 4193-4198. https://doi.org/ 10.1007/s12206-014-0932-6
- Abbas, I.A., Abd-alla, A.N. and Othman, M.I.A. (2011), "Generalized magneto-thermoelasticity in a fibre-reinforced anisotropic half-space", Int. J. Thermophys., 32(5), 1071-1085. https://doi.org/10.1007/s10765-011-0957-3
- Abbas, I.A. and Othman, M.I.A. (2012), "Generalized thermoelastic interaction in a fibre-reinforced anisotropic half-space under hydrostatic initial stress", J. Vib. Control, 18(2), 175-182. https://doi.org/ 10.1177/1077546311402529
- Abbas, I.A. and Youssef, H.M. (2013), "Two-temperature generalized thermoelasticity under ramp-type heating by finite element method", Meccanica, 48(2), 331-339. https://doi.org/10.1007/s11012-012-9604-8
- Ahmad, F. and Khan, A. (2001), "Effect of rotation on wave propagation in a transversely isotropic medium", Math. Prob. Eng., 7(2), 147-154. http://dx.doi.org/10.1155/S1024123X01001582
- Belfield, A.J., Rogers, T.G. and Spencer, A.J.M. (1983), "Stress in elastic plates reinforced by fibre lying in concentric circles", J. Mech. Phys. Solids, 31, 25-54. https://doi.org/10.1016/0022-5096(83)90018-2.
- England, A.H. and Rogers, T.G. (1973), "Plane crack problems for ideal fibre-reinforced materials", Q. J. Mech. Appl. Math., 26, 303-320. https://doi.org/doi.org/10.1093/qjmam/26.3.303.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast. 2, 1-7. https://doi.org/10.1007/BF00045689.
- Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulate of thermo-mechanics", Proc. Roy. Soc., London. 432, 171-194. https://doi.org/10.1098/rspa.1991.0012.
- Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15, 253-264. https://doi.org/10.1080/01495739208946136.
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast. 31, 189-208. https://doi.org/10.1007/BF00044969.
- Hetnarski, R.B. and Ignaczak, J. (1999), "Generalized thermo-elasticity", J. Therm. Stress, 22, 451-476. https://doi.org/10.1080/014957399280832.
- Lord, H.W. and Shulman Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid, 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Marin, M., Baleanu, D. and Vlase, S. (2017), "Effect of Micro-temperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. https://doi.org/https://doi.org/10.12989/sem.2017.61.3.381
- Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. Part B Eng., 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063
- Marin, M. and Florea, O. (2014), "On temporal behaviour of solutions in thermoelasticity of porous micro-polr bodies", An. St. Univ. Ovidius Constanta, 22(1), 169-188. https://doi.org/ 10.2478/auom-2014-0014
- Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continuum Mech. Thermodynamics, 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4
- Montanaro, A. (1999), "On singular surface in isotropic linear thermoelasticity with initial stress", J. Acoustical Society America, 106, 1586-1588. https://doi.org/ 10.1121/1.427154.
- Noda, N. (1986), Thermal Stresses in Materials with Temperature- Dependent Properties, Thermal Stresses I, R.B. Hetnarski (Editor), North-Holland, Amsterdam.
- Othman, M.I.A. and Abbas, I.A. (2011), "Effect of rotation on plane waves at the free surface of a fibre-reinforced thermoelastic half-space using the finite element method", Meccanica, 46(2), 413-421. https://doi.org/10.1007/s11012-010-9322-z
- Othman, M.I.A. and Abbas, I.A. (2012), "Generalized thermo-elasticity of thermal-shock problem in a non-homogeneous isotropic hollow cylinder with energy dissipation", Int. J. Thermophys., 33(5), 913-923. https://doi.org/10.1007/s10765-012-1202-4
- Othman, M.I.A. and Said, S.M. (2012), "The effect of mechanical force on generalized thermoelasticity in a fiber-reinforced under three theories", Int. J. Thermophys., 33(6), 1082-1099. https://doi.org/10.1007/s10765-012-1203-3
- Othman, M.I.A., Abouelregal, A.E. and Said, S.M. (2019), "The effect of variabile thermal conductivity on an infinite fiber-reinforced thick plate under initial stress", J. Mech. Materials Struct., 14(2), 277-293. https://doi.org/10.2140/jomms.2019.14.277.
- Othman, M.I.A. and Said, S.M. (2014), "2-D problem of magneto-thermoelasticity fiber-reinforced medium under temperature-dependent properties with three-phase-lag theory", Meccanica, 49(5), 1225-1243. https://doi.org/ 10.1007/s11012-014-9879-z
- Othman, M.I.A. and Atwa, S.Y. (2014), "Effect of rotation on a fiber-reinforced thermoelastic under Green-Naghdi theory and influence of gravity", Meccanica, 49(1), 23-36. https://doi.org/10.1007/s11012-013-9748-1
- Othman, M.I.A. and Said, S.M. (2015), "The effect of rotation on a fibre-reinforced medium under generalized magneto-thermo-elasticity with internal heat source", Mech. Adv. Materials Struct., 22(3), 168-183. https://doi.org/10.1080/15376494.2012.725508
- Othman, M.I.A., Sarkar, N. and Said, S.M. (2013), "Effect of hydrostatic initial stress and gravity field on a fiber-reinforced thermoelastic medium with fractional derivative heat transfer", Multi. Model. Materials Struct., 9(3), 410-426. https://doi.org/10.1108/MMMS-11-2012-0026
- Pipkin, A.C. (1973), In Finite Deformations of Ideal Fiber-Reinforced Composites, Edited by G.P. Sendeckyi. Academic Press, New York.
- Quintanilla, R. and Racke, R. (2008), "A note on stability in three-phase-lag heat conduction", Int. J. Heat Mass Transfer, 51, 24- 29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045
- Roy Choudhuri, S.K. (1984), "Electro-magneto-thermoelastic plane waves in rotating media with thermal relaxation", Int. J. Eng. Sci., 22(5), 519-530. https://doi.org/10.1016/0020-7225(84)90054-5
- Said, S.M. and Othman, M.I.A. (2016), "Wave Propagation in a two-temperature fiber-reinforced magneto-thermoelastic medium with three-phase-lag model", Struct. Eng. Mech., 57(2), 201-220. http://dx.doi.org/10.12989/sem.2016.57.2.201
- Zenkour, A.M. and Abbas, I.A. (2014), "A generalized thermo- elasticity problem of an annular cylinder with temperature-dependent density and material properties", Int. J. Mech. Sci., 84, 54-60. https://doi.org/10.1016/j.ijmecsci.2014.03.016
- Zorammuana, C. and Singh, S.S. (2015), "SH-wave at a plane interface between homogeneous and inhomogeneous fibre-reinforced elastic half-spaces", Ind. J. Materials Sci., 2015, 1-8. http://dx.doi.org/10.1155/2015/532939