DOI QR코드

DOI QR Code

Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints

  • Liu, Xinrong (School of Civil Engineering, Chongqing University) ;
  • Liu, Yongquan (School of Civil Engineering, Chongqing University) ;
  • Lu, Yuming (School of Civil Engineering, Chongqing University) ;
  • Kou, Miaomiao (School of Civil Engineering, Qingdao University of Technology)
  • 투고 : 2017.06.29
  • 심사 : 2019.11.27
  • 발행 : 2020.05.10

초록

The pre-peak cyclic shear mechanism of two-order asperity degradation of rock joints in the direct shear tests with static constant normal loads (CNL) are investigated using experimental and numerical methods. The laboratory testing rock specimens contains the idealized and regular two-order triangular-shaped asperities, which represent the specific geometrical conditions of natural and irregular waviness and unevenness of rock joint surfaces, in the pre-peak cyclic shear tests. Three different shear failure patterns of two-order triangular-shaped rock joints can be found in the experiments at constant horizontal shear velocity and various static constant normal loads in the direct and pre-peak cyclic shear tests. The discrete element method is adopted to simulate the pre-peak shear failure behaviors of rock joints with two-order triangular-shaped asperities. The rock joint interfaces are simulated using a modified smooth joint model, where microscopic scale slip surfaces are applied at contacts between discrete particles in the upper and lower rock blocks. Comparing the discrete numerical results with the experimental results, the microscopic bond particle model parameters are calibrated. Effects of cyclic shear loading amplitude, static constant normal loads and initial waviness asperity angles on the pre-peak cyclic shear failure behaviors of triangular-shaped rock joints are also numerically investigated.

키워드

과제정보

This work is financially supported by the National Natural Science Foundation of China (Grant No. 41772319).

참고문헌

  1. Amiri, F., Anitescu, C., Arroyo, M., Bordas, S. and Rabczuk, T. (2014), "XFEM interpolants, a seamless bridge between XFEM and enriched meshless methods", Comput. Mech., 53(1), 45-57. https://doi.org/10.1007/s00466-013-0891-2
  2. Areias, P., Rabczuk, T. and Dias-da Costa, D. (2013), "Element-wise fracture algorithm based on rotation of edges", Eng. Fract. Mech., 110, 113-137. https://doi.org/10.1016/j.engfracmech.2013.06.006
  3. Areias, P. and Rabczuk, T. (2017), "Steiner-point free edge cutting of tetrahedral meshes with applications in fracture", Finite Elem. Anal. Des., 132, 27-41. https://doi.org/10.1016/j.finel.2017.05.001
  4. Asadi, M., Rasouli, V. and Barla, G. (2012), "A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures", Rock Mech. Rock Eng., 45(5), 649-675. https://doi.org/10.1007/s00603-012-0231-4
  5. Asadi, M.S., Rasouli, V. and Barla, G. (2013), "A laboratory shear cell used for simulation of shear strength and asperity degradation of rough rock fractures", Rock Mech. Rock Eng., 46(4), 683-699. https://doi.org/10.1007/s00603-012-0322-2
  6. Bagde, M.N. and Petros, V. (2005), "Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading", Int. J. Rock Mech. Min. Sci., 42(2), 237-250. https://doi.org/10.1016/j.ijrmms.2004.08.008
  7. Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical direct shear tests to model the shear behaviour of rock joints", Comput. Geotech., 51, 101-115. https://doi.org/10.1016/j.compgeo.2013.02.003
  8. Bahaaddini, M., Hagan, P.C., Mitra, R. and Hebblewhite, B.K. (2014) "Scale effect on the shear behaviour of rock joints based on a numerical study", Eng. Geol., 181, 212-223. https://doi.org/10.1016/j.enggeo.2014.07.018
  9. Bahaaddini, M., Hagan, P.C., Mitra, R. and Khosravi, M.H. (2016), "Experimental and numerical study of asperity degradation in the direct shear test", Eng. Geol., 204, 41-52. https://doi.org/10.1016/j.enggeo.2016.01.018
  10. Bandis, S.C., Lumsden, A.C. and Barton, N.R. (1981), "Experimental studies of scale effects on the shear behaviour of rock joints", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 18(1), 1-21.
  11. Bandis, S.C., Lumsden, A.C. and Barton, N.R. (1983), "Fundamentals of rock joint deformation", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20(6), 249-268. https://doi.org/10.1016/0148-9062(83)90595-8
  12. Barton, N. (1973), "Review of a new shear-strength criterion for rock joints", Eng. Geol., 7(4), 287-332. https://doi.org/10.1016/0013-7952(73)90013-6
  13. Barton, N. (1976), "The shear strength of rock and rock joints", Int J Rock Mech. Min. Sci. Geomech. Abstr., 19(9), 255-279. https://doi.org/10.1016/0148-9062(76)90003-6
  14. Barton, N. and Choubey, V. (1977), "The shear strength of rock joints in theory and practice", Rock Mech., 10(1-2), 1-54. https://doi.org/10.1007/BF01261801
  15. Belem, T., Souley, M. and Homand, F. (2007), "Modeling surface roughness degradation of rock joint wall during direct and cyclic shearing", Acta Geotech., 2(4), 227-248. https://doi.org/10.1007/s11440-007-0039-7
  16. Benmokrane, B., Mouchaorab, K.S. and Ballivy, G. (1994), "Laboratory investigation of shaft resistance of rock-socketed piers using the constant normal stiffness direct shear test", Can. Geotech. J., 31(3), 407-419. https://doi.org/10.1139/t94-048
  17. Cai, X., Zhou, Z., Liu, K., Du, X. and Zhang, H. (2019), "Water-weakening effects on the mechanical behavior of different rock types: phenomena and mechanisms", Appl. Sci., 9(20), 4450. https://doi.org/10.3390/app9204450
  18. Cao, R.H., Cao, P., Lin, H., Pu, C. and Ke, O. (2016), "Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: experimental studies and particle mechanics approach", Rock Mech. Rock Eng., 49(3), 763-783. https://doi.org/10.1007/s00603-015-0779-x
  19. Cao, R.H., Cao, P., Lin, H., Ma, G. and Chen, Y. (2018), "Failure characteristics of intermittent fissures under a compressive-shear test: Experimental and numerical analyses", Theor. Appl. Fract. Mech., 96, 740-757. https://doi.org/10.1016/j.tafmec.2017.11.002
  20. Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002
  21. Dang, W., Konietzky, H. and Fruhwirt, T. (2016), "Direct shear behavior of a plane joint under dynamic normal load (DNL) conditions", Eng. Geol., 213, 133-141. https://doi.org/10.1016/j.enggeo.2016.08.016
  22. Dang, W.G., Konietzky, H. and Chang, L. (2018), "Velocity-frequency-amplitude-dependent frictional resistance of planar joints under dynamic normal load (DNL) conditions", Tunnel Undergr. Space Technol., 79, 27-34. https://doi.org/10.1016/j.tust.2018.04.038
  23. Dang, W., Konietzky, H., Fruhwirt, T. and Herbst, M. (2019), "Cyclic Frictional Responses of Planar Joints Under Cyclic Normal Load Conditions: Laboratory Tests and Numerical Simulations", Rock Mech. Rock Eng. doi:10.1007/s00603-019-01910-9.
  24. Eshiet, K. and Sheng, Y. (2014), "Investigation of geomechanical responses of reservoirs induced by carbon dioxide storage", Environ. Earth. Sci., 71(9), 3999-4020. https://doi.org/10.1007/s12665-013-2784-2
  25. Eshiet, K. and Shen, Y. (2017), "The role of rock joint frictional strength in the containment of fracture propagation", Acta Geotech., 12(4), 897-920. https://doi.org/10.1007/s11440-016-0512-2
  26. Fakhimi, A. (2004), "Application of slightly overlapped circular particles assembly in numerical simulation of rocks with high friction angles", Eng. Geol., 74(1-2), 129-138. https://doi.org/10.1016/j.enggeo.2004.03.006
  27. Fathi, A., Moradian, Z., Rivard, P. and Ballivy, G. (2016), "Shear mechanism of rock joints under pre-peak cyclic loading condition", Int. J. Rock Mech. Min. Sci., 83, 197-210. https://doi.org/10.1016/j.ijrmms.2016.01.009
  28. Ferrero, A.M., Migliazza, M. and Tebaldi, G. (2010), "Development of a new experimental apparatus for the study of the mechanical behavior of a rock discontinuity under direct and cyclic loads", Rock Mech. Rock Eng., 43(6), 685-695. https://doi.org/10.1007/s00603-010-0111-8
  29. Gu, D.M., Huang, D., Yang, W.D., Zhu, J.L. and Fu, G.Y. (2017), "Understanding the triggering mechanism and possible kinematic evolution of a reactivated landslide in the Three Gorges Reservoir", Landslides, 14(6), 2073-2087. https://doi.org/10.1007/s10346-017-0845-4
  30. Haeri, H., Sarfarazi, V., Zhu, Z., Hedayat, A., Nezamabadi, M.F. and Karbala M. (2018a), "Simulation of crack initiation and propagation in three point bending test using PFC2D", Struct. Eng. Mech., 66(4), 453-463. https://doi.org/10.12989/SEM.2018.66.4.453
  31. Haeri, H., Sarfarazi, V., Zhu, Z. and Lazemi, H.A. (2018b), "Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D", Struct. Eng. Mech., 67(5), 505-516. https://doi.org/10.12989/SEM.2018.67.5.505
  32. Haeri, H., Sarfarazi, V., Zhu, Z. and Marji, M.F. (2018c), "Simulation of the tensile failure behaviour of transversally bedding layers using PFC2D", Struct. Eng. Mech., 67(5), 493-504. https://doi.org/10.12989/SEM.2018.67.5.493
  33. Haeri, H., Sarfarazi, V. and Zhu, Z. (2018d), "PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test", Struct. Eng. Mech., 68(4), 497-505. https://doi.org/10.12989/SEM.2018.68.4.497
  34. Haeri, H., Sarfarazi, V. and Zhu, Z. (2018e), "Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D", Struct. Eng. Mech., 68(4), 507-517. https://doi.org/10.12989/SEM.2018.68.4.507
  35. Huang, T.H., Chang, C.S. and Chao, C.Y. (2002), "Experimental and mathematical modeling for fracture of rock joint with regular asperities", Eng. Fract. Mech., 69(17), 1977-1996. https://doi.org/10.1016/S0013-7944(02)00072-3
  36. Huang, D., Cen, D., Ma, G. and Huang, R. (2015), "Step-path failure of rock slopes with intermittent joints", Landslides, 12(5), 911-926. https://doi.org/10.1007/s10346-014-0517-6
  37. Huang, Y.H., Yang, S.Q. and Zhao, J. (2016), "Three-Dimensional Numerical Simulation on Triaxial Failure Mechanical Behavior of Rock-Like Specimen Containing Two Unparallel Fissures", Rock Mech. Rock Eng., 49(12), 4711-4729. https://doi.org/10.1007/s00603-016-1081-2
  38. Huang, Y.H., Yang, S.Q. and Zhao, J. (2017), "Strength failure behavior and crack evolution mechanism of granite containing pre-existing non-coplanar holes: experimental study and particle flow modeling", Comput. Geotech., 88, 182-198. https://doi.org/10.1016/j.compgeo.2017.03.015
  39. Huang, Y.H., Yang, S.Q. and Tian, W.L. (2019), "Crack coalescence behavior of sandstone specimen containing two pre-existing flaws under different confining pressures", Theor. Appl. Fract. Mech., 99, 118-130. https://doi.org/10.1016/j.tafmec.2018.11.013
  40. Huang, Y.H. and Yang, S.Q. (2019), "Mechanical and cracking behavior of granite containing two coplanar flaws under conventional triaxial compression", Int. J. Damage Mech., 28(4), 590-610. https://doi.org/10.1177/1056789518780214
  41. Jafari, M.K., Hosseini, K.A., Pellet, F., Boulon, M. and Buzzi, O. (2003), "Evaluation of shear strength of rock joints subjected to cyclic loading", Soil Dyn. Earthq. Eng., 23(7), 619-630. https://doi.org/10.1016/S0267-7261(03)00063-0
  42. Jafari, M.K., Pellet, F., Boulon, M. and Amini Hosseini, K. (2004), "Experimental study of mechanical behavior of rock joints under cyclic loading", Rock Mech. Rock Eng., 37(1), 3-23. https://doi.org/10.1007/s00603-003-0001-4
  43. Jiang, Y., Xiao, J., Tanabashi, Y. and Mizokamib, T. (2004) "Development of an automated servo-controlled direct shear apparatus applying a constant normal stiffness condition", Int. J. Rock Mech. Min. Sci., 41(2), 275-286. https://doi.org/10.1016/j.ijrmms.2003.08.004
  44. Johnston, I.W., Lam, T.S. and Williams, A.F. (1987), "Constant normal stiffness direct shear testing for socketed pile design in weak rock", Geotechnique 37(1), 83-89. https://doi.org/10.1680/geot.1987.37.1.83
  45. Kou, M.M., Lian, Y.J. and Wang, Y.T. (2019a), "Numerical investigations on crack propagation and crack branching in brittle solids under dynamic loading using bond-particle mode", Eng. Fract. Mech., 212, 41-56. https://doi.org/10.1016/j.engfracmech.2019.03.012
  46. Kou, M., Liu, X., Tang, S. and Wang, Y. (2019b), "3-D X-ray computed tomography on failure characteristics of rock-like materials under coupled hydro-mechanical loading", Theor. Appl. Fract. Mech., 104, 102396. https://doi.org/10.1016/j.tafmec.2019.102396
  47. Kou, M., Han, D., Xiao, C. and Wang, Y. (2019c), "Dynamic fracture instability in brittle materials: Insights from DEM simulations", Struct. Eng. Mech., 71(1), 65-75. https://doi.org/10.12989/SEM.2019.71.1.065
  48. Kou, M., Liu, X., and Wang, Y. (2020), "Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction. Structural Engineering and Mechanics", Struct. Eng. Mech., 74(2), 1-14.
  49. Lee, H.S., Park, Y.J., Cho, T.F. and You, K.H. (2001), "Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading", Int. J. Rock Mech. Min. Sci., 38(7), 967-980. https://doi.org/10.1016/S1365-1609(01)00060-0
  50. Li, X. and Chen, J. (2017). "An extended cohesive damage model for simulating arbitrary damage propagation in engineering materials", Comput. Methods Appl. Mech. Engrg., 315, 744-759. https://doi.org/10.1016/j.cma.2016.11.029
  51. Li, X., Gao, W. and Liu, W. (2019), "A mesh objective continuum damage model for quasi-brittle crack modelling and finite element implementation", Int. J. Damage Mech., 28(9), 1299-1322. https://doi.org/10.1177/1056789518823876
  52. Liu, Y., Dai, F., Zhao, T. and Xu, N.W. (2017), "Numerical investigation of the dynamic properties of intermittent jointed rock models subjected to cyclic uniaxial compression", Rock Mech. Rock Eng., 50(1), 89-112. https://doi.org/10.1007/s00603-016-1085-y
  53. Mehrian, S. Z., Amrei, S. R., Maniat, M. and Nowruzpour Mehrian, S.M. (2016), "Structural health monitoring using optimising algorithms based on flexibility matrix approach and combination of natural frequencies and mode shapes", Int. J. Struct. Eng., 7(4), 398-411. https://doi.org/10.1504/IJSTRUCTE.2016.079287
  54. Meng, F., Zhou, H., Li, S., Zhang, C., Wang, Z., Kong, L. and Zhang, L. (2016), "Shear behaviour and acoustic emission characteristics of different joints under various stress levels", Rock Mech. Rock Eng., 49(12), 4919-4928. https://doi.org/10.1007/s00603-016-1034-9
  55. Meng, F., Zhou, H., Wang, Z., Zhang, C., Li, S., Zhang, L. and Kong, L. (2018a), "Characteristics of asperity damage and its influence on the shear behavior of granite joints", Rock Mech. Rock Eng., 51(2), 429-449. https://doi.org/10.1007/s00603-017-1315-y
  56. Meng, F., Wong, L.N.Y., Zhou, H. and Wang, Z. (2018b), "Comparative study on dynamic shear behavior and failure mechanism of two types of granite joint", Eng. Geol., 245, 356-369. https://doi.org/10.1016/j.enggeo.2018.09.005
  57. Mirzaghorbanali, A, Nemcik, J. and Aziz, N. (2014a), "Effects of cyclic loading on the shear behavior of infilled rock joints under constant normal stiffness conditions", Rock Mech. Rock Eng., 47(4), 1373-1391. https://doi.org/10.1007/s00603-013-0452-1
  58. Mirzaghorbanali, A., Nemcik, J. and Aziz, N. (2014b), "Effect of shear rate on cyclic loading shear behavior of rock joints under constant normal stiffness conditions", Rock Mech. Rock Eng., 47(5), 1931-1938. https://doi.org/10.1007/s00603-013-0453-0
  59. Mohammed, T.J., Bakar, B.H.A. and Bunnori, A.B. (2015), "Strengthening of reinforced concrete beams subjected to torsion with UHPFC composites", Struct. Eng. Mech., 56(1), 123-136. https://doi.org/10.12989/sem.2015.56.1.123
  60. Moradian, Z.A., Ballivy, G., Rivard, P., Gravel, C. and Rousseau, B. (2010), "Evaluating damage during shear tests of rock joints using acoustic emission", Int. J. Rock Mech. Min. Sci., 47(4), 590-598. https://doi.org/10.1016/j.ijrmms.2010.01.004
  61. Moradian, Z.A., Ballivy, G. and Rivard, P. (2012), "Correlating acoustic emission sources with damaged zones during direct shear test of rock joints", Can. Geotech. J., 49(6), 710-718. https://doi.org/10.1139/t2012-029
  62. Moes, N. and Belytschko, T. (2002), "Extended finite element method for cohesive crack growth", Eng. Fract. Mech., 69(7), 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X
  63. Nanthakumar, S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, T. (2016), "Detection of ma-terial interfaces using a regularized level set method in piezoelectric structures", Inverse Probl. Sci. Eng., 24(1), 153-176. https://doi.org/10.1080/17415977.2015.1017485
  64. Nowruzpour, M., Sarkar, S., Reddy, J.N. and Roy, D. (2019), "A derivative-free upscaled theory for analysis of defects", J. Mech. Phys. Solids, 122, 89-501.
  65. Nowruzpour, M. and Reddy, J.N. (2018), "Unification of local and nonlocal models within a stable integral formulation for analysis of defects", Int. J. Eng. Sci., 132, 45-59. https://doi.org/10.1016/j.ijengsci.2018.06.008
  66. Nowruzpour Mehrian, S.M., Roozbahani, M.M. and Mehrian S.Z., Fathi, A. (2013), "Comprehensive Investigation in Buckling and Free Vibration of Laminate Composite cylindrical Shell", J. Bas. Appl. Sci. Res., 3(5), 195-205.
  67. Ooi, L.H. and Carter, J.P. (1987), "A constant normal stiffness direct shear device for static and cyclic loading", ASTM Geotech. Test J., 10(1), 3-12. https://doi.org/10.1520/GTJ10132J
  68. Park, J.W. and Song, J.J. (2009), "Numerical simulation of a direct shear test on a rock joint using a bonded-particle model", Int. J. Rock Mech. Min. Sci., 46(8), 1315-1328. https://doi.org/10.1016/j.ijrmms.2009.03.007
  69. Potyondy, D.O. and Cundall, P.A. (1998), "Modeling notch-formation mechanisms in the URL mine-by test tunnel using bonded assemblies of circular particles", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 35(4-5), 510-511. https://doi.org/10.1016/S0148-9062(98)00083-7
  70. Potyondy D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  71. PFC2D (2004), "Particle Flow Code in 2 Dimensions-Version 3.1", Itasca Cons Group, Minneapolis.
  72. Sarfarazi, V. and Haeri, H. (2018), "Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)", Struct. Eng. Mech., 68(5), 537-547. https://doi.org/10.12989/SEM.2018.68.5.537
  73. Seidel, J.P. and Haberfield, C.M. (2002), "A theoretical model for rock joints subjected to constant normal stiffness direct shear", Int. J. Rock Mech. Min. Sci., 39(5), 539-553. https://doi.org/10.1016/S1365-1609(02)00056-4
  74. Song, Z., Konietzky, H. and Herbst, M. (2019), "Bonded-particle model-based simulation of artificial rock subjected to cyclic loading", Acta Geotech., 14(4), 955-971. https://doi.org/10.1007/s11440-018-0723-9
  75. Song, Z., Fruhwirt, T. and Konietzky, H. (2020), "Inhomogeneous mechanical behaviour of concrete subjected to monotonic and cyclic loading", Int J Fatigue, 132, 105383. https://doi.org/10.1016/j.ijfatigue.2019.105383
  76. Wang, Y., Zhou, X. and Xu, X. (2016), "Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics", Eng. Fract. Mech., 163, 248-273. https://doi.org/10.1016/j.engfracmech.2016.06.013
  77. Wang, Y., Zhou, X. and Shou, Y. (2017), "The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics", Int. J. Mech. Sci., 128-129, 614-643. https://doi.org/10.1016/j.ijmecsci.2017.05.019
  78. Wang, Y., Zhou, X., Wang, Y. and Shou, Y. (2018a), "A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids", Int. J. Solids Struct., 134, 89-115. https://doi.org/10.1016/j.ijsolstr.2017.10.022
  79. Wang, Y., Zhou, X. and Kou, M. (2018b), "Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles", Ceram. Int., 44(10), 11512-11542. https://doi.org/10.1016/j.ceramint.2018.03.214
  80. Wang, Y., Zhou, X. and Kou, M. (2018c), "Numerical studies on thermal shock crack branching instability in brittle solids", Eng. Fract. Mech., 204, 157-184. https://doi.org/10.1016/j.engfracmech.2018.08.028
  81. Wang, Y., Zhou, X. and Kou, M. (2018d), "A coupled thermo-mechanical bond-based peridynamics for simulating thermal cracking in rocks", Int. J. Fract., 211(1-2), 13-42 https://doi.org/10.1007/s10704-018-0273-z
  82. Wang, Y., Zhou, X. and Kou, M. (2019a), "Three-dimensional numerical study on the failure characteristics of intermittent fissures under compressive-shear loads", Acta Geotech., 14(4), 1161-1193 https://doi.org/10.1007/s11440-018-0709-7
  83. Wang, Y., Zhou, X. and Kou, M. (2019b), "An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks.", Eur. J. Mech. A-Solid, 73, 282-305 https://doi.org/10.1016/j.euromechsol.2018.09.007
  84. Wang, L., Xu, J., Wang, J. and Karihaloo, B.L. (2019c), "A mechanism-based spatiotemporal non-local constitutive formulation -for elastodynamics of composites", Mech. Mater., 128, 105-116. https://doi.org/10.1016/j.mechmat.2018.07.013
  85. Wang, L., Xu, J. and Wang, J. (2019d), "Elastodynamics of Linearized Isotropic State-Based Peridynamic Media", J. Elast., 137, 157-176. https://doi.org/10.1007/s10659-018-09723-7
  86. Xie, Y., Cao, P., Liu, J. and Dong, L. (2016), "Influence of crack surface friction on crack initiation and propagation: A numerical investigation based on extended finite element method", Comput. Geotech., 74, 1-14 https://doi.org/10.1016/j.compgeo.2015.12.013
  87. Yang, Z.Y., Di, C.C. and Yen, K.C. (2001), "The effect of asperity order on the roughness of rock joints", Int. J. Rock Mech. Min. Sci., 38(5), 745-752 https://doi.org/10.1016/S1365-1609(01)00032-6
  88. Yang, D., Zhang, D., Niu, S., Dang, Y., Feng, W. and Ge, S. (2018) "Experiment and study on mechanical property of sandstone post-peak under the cyclic loading and unloading", Geotech. Geol. Eng., 36(3), 1609-1620. https://doi.org/10.1007/s10706-017-0414-6
  89. Zhang, X.P. and Wong, L.N.Y. (2012), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach", Rock Mech. Rock Eng., 45(5), 711-737. https://doi.org/10.1007/s00603-011-0176-z
  90. Zheng, B. and Qi, S. (2012), "A new index to describe joint roughness coefficient (JRC) under cyclic shear", Eng. Geol., 212, 72-85. https://doi.org/10.1016/j.enggeo.2016.07.017
  91. Zhou, H., Meng, F., Zhang, C., Hu, D., Lu, J. and Xu, R (2016) "Investigation of the acoustic emission characteristics of artificial saw-tooth joints under shearing condition", Acta Geotech., 11(4), 925-939. https://doi.org/10.1007/s11440-014-0359-3
  92. Zhou, X.P. and Wang, Y.T. (2016) "Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics", Int. J. Rock Mech. Min. Sci., 89, 235-249. https://doi.org/10.1016/j.ijrmms.2016.09.010
  93. Zhou, X., Wang, Y., Shou, Y. and Kou, M. (2018), "A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads", Eng. Fract. Mech., 188, 151-183. https://doi.org/10.1016/j.engfracmech.2017.07.031
  94. Zhou, Z., Cai, X., Li, X., Cao, W. and Du, X. (2019a), "Dynamic Response and Energy Evolution of Sandstone Under Coupled Static-Dynamic Compression: Insights from Experimental Study into Deep Rock Engineering Applications", Rock Mech. Rock Eng., 1-27.
  95. Zhou, Z., Wang, H., Cai, X., Chen, L., Yude, E. and Chen, R. (2019b), "Damage Evolution and Failure Behavior of Post-Mainshock Damaged Rocks under Aftershock Effects", Energies, 12(23), 4429. https://doi.org/10.3390/en12234429
  96. Zhou, X.P., Wang, Y.T., Zhang, J.Z. and Kou, M.M. (2019c), "Fracturing behavior study of three-flawed specimens by uniaxial compression and 3D digital image correlation: sensitivity to brittleness", Rock Mech. Rock Eng., 52(3), 691-718. https://doi.org/10.1007/s00603-018-1600-4