Acknowledgement
This work is financially supported by the National Natural Science Foundation of China (Grant No. 41772319).
References
- Amiri, F., Anitescu, C., Arroyo, M., Bordas, S. and Rabczuk, T. (2014), "XFEM interpolants, a seamless bridge between XFEM and enriched meshless methods", Comput. Mech., 53(1), 45-57. https://doi.org/10.1007/s00466-013-0891-2
- Areias, P., Rabczuk, T. and Dias-da Costa, D. (2013), "Element-wise fracture algorithm based on rotation of edges", Eng. Fract. Mech., 110, 113-137. https://doi.org/10.1016/j.engfracmech.2013.06.006
- Areias, P. and Rabczuk, T. (2017), "Steiner-point free edge cutting of tetrahedral meshes with applications in fracture", Finite Elem. Anal. Des., 132, 27-41. https://doi.org/10.1016/j.finel.2017.05.001
- Asadi, M., Rasouli, V. and Barla, G. (2012), "A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures", Rock Mech. Rock Eng., 45(5), 649-675. https://doi.org/10.1007/s00603-012-0231-4
- Asadi, M.S., Rasouli, V. and Barla, G. (2013), "A laboratory shear cell used for simulation of shear strength and asperity degradation of rough rock fractures", Rock Mech. Rock Eng., 46(4), 683-699. https://doi.org/10.1007/s00603-012-0322-2
- Bagde, M.N. and Petros, V. (2005), "Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading", Int. J. Rock Mech. Min. Sci., 42(2), 237-250. https://doi.org/10.1016/j.ijrmms.2004.08.008
- Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical direct shear tests to model the shear behaviour of rock joints", Comput. Geotech., 51, 101-115. https://doi.org/10.1016/j.compgeo.2013.02.003
- Bahaaddini, M., Hagan, P.C., Mitra, R. and Hebblewhite, B.K. (2014) "Scale effect on the shear behaviour of rock joints based on a numerical study", Eng. Geol., 181, 212-223. https://doi.org/10.1016/j.enggeo.2014.07.018
- Bahaaddini, M., Hagan, P.C., Mitra, R. and Khosravi, M.H. (2016), "Experimental and numerical study of asperity degradation in the direct shear test", Eng. Geol., 204, 41-52. https://doi.org/10.1016/j.enggeo.2016.01.018
- Bandis, S.C., Lumsden, A.C. and Barton, N.R. (1981), "Experimental studies of scale effects on the shear behaviour of rock joints", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 18(1), 1-21.
- Bandis, S.C., Lumsden, A.C. and Barton, N.R. (1983), "Fundamentals of rock joint deformation", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20(6), 249-268. https://doi.org/10.1016/0148-9062(83)90595-8
- Barton, N. (1973), "Review of a new shear-strength criterion for rock joints", Eng. Geol., 7(4), 287-332. https://doi.org/10.1016/0013-7952(73)90013-6
- Barton, N. (1976), "The shear strength of rock and rock joints", Int J Rock Mech. Min. Sci. Geomech. Abstr., 19(9), 255-279. https://doi.org/10.1016/0148-9062(76)90003-6
- Barton, N. and Choubey, V. (1977), "The shear strength of rock joints in theory and practice", Rock Mech., 10(1-2), 1-54. https://doi.org/10.1007/BF01261801
- Belem, T., Souley, M. and Homand, F. (2007), "Modeling surface roughness degradation of rock joint wall during direct and cyclic shearing", Acta Geotech., 2(4), 227-248. https://doi.org/10.1007/s11440-007-0039-7
- Benmokrane, B., Mouchaorab, K.S. and Ballivy, G. (1994), "Laboratory investigation of shaft resistance of rock-socketed piers using the constant normal stiffness direct shear test", Can. Geotech. J., 31(3), 407-419. https://doi.org/10.1139/t94-048
- Cai, X., Zhou, Z., Liu, K., Du, X. and Zhang, H. (2019), "Water-weakening effects on the mechanical behavior of different rock types: phenomena and mechanisms", Appl. Sci., 9(20), 4450. https://doi.org/10.3390/app9204450
- Cao, R.H., Cao, P., Lin, H., Pu, C. and Ke, O. (2016), "Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: experimental studies and particle mechanics approach", Rock Mech. Rock Eng., 49(3), 763-783. https://doi.org/10.1007/s00603-015-0779-x
- Cao, R.H., Cao, P., Lin, H., Ma, G. and Chen, Y. (2018), "Failure characteristics of intermittent fissures under a compressive-shear test: Experimental and numerical analyses", Theor. Appl. Fract. Mech., 96, 740-757. https://doi.org/10.1016/j.tafmec.2017.11.002
- Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002
- Dang, W., Konietzky, H. and Fruhwirt, T. (2016), "Direct shear behavior of a plane joint under dynamic normal load (DNL) conditions", Eng. Geol., 213, 133-141. https://doi.org/10.1016/j.enggeo.2016.08.016
- Dang, W.G., Konietzky, H. and Chang, L. (2018), "Velocity-frequency-amplitude-dependent frictional resistance of planar joints under dynamic normal load (DNL) conditions", Tunnel Undergr. Space Technol., 79, 27-34. https://doi.org/10.1016/j.tust.2018.04.038
- Dang, W., Konietzky, H., Fruhwirt, T. and Herbst, M. (2019), "Cyclic Frictional Responses of Planar Joints Under Cyclic Normal Load Conditions: Laboratory Tests and Numerical Simulations", Rock Mech. Rock Eng. doi:10.1007/s00603-019-01910-9.
- Eshiet, K. and Sheng, Y. (2014), "Investigation of geomechanical responses of reservoirs induced by carbon dioxide storage", Environ. Earth. Sci., 71(9), 3999-4020. https://doi.org/10.1007/s12665-013-2784-2
- Eshiet, K. and Shen, Y. (2017), "The role of rock joint frictional strength in the containment of fracture propagation", Acta Geotech., 12(4), 897-920. https://doi.org/10.1007/s11440-016-0512-2
- Fakhimi, A. (2004), "Application of slightly overlapped circular particles assembly in numerical simulation of rocks with high friction angles", Eng. Geol., 74(1-2), 129-138. https://doi.org/10.1016/j.enggeo.2004.03.006
- Fathi, A., Moradian, Z., Rivard, P. and Ballivy, G. (2016), "Shear mechanism of rock joints under pre-peak cyclic loading condition", Int. J. Rock Mech. Min. Sci., 83, 197-210. https://doi.org/10.1016/j.ijrmms.2016.01.009
- Ferrero, A.M., Migliazza, M. and Tebaldi, G. (2010), "Development of a new experimental apparatus for the study of the mechanical behavior of a rock discontinuity under direct and cyclic loads", Rock Mech. Rock Eng., 43(6), 685-695. https://doi.org/10.1007/s00603-010-0111-8
- Gu, D.M., Huang, D., Yang, W.D., Zhu, J.L. and Fu, G.Y. (2017), "Understanding the triggering mechanism and possible kinematic evolution of a reactivated landslide in the Three Gorges Reservoir", Landslides, 14(6), 2073-2087. https://doi.org/10.1007/s10346-017-0845-4
- Haeri, H., Sarfarazi, V., Zhu, Z., Hedayat, A., Nezamabadi, M.F. and Karbala M. (2018a), "Simulation of crack initiation and propagation in three point bending test using PFC2D", Struct. Eng. Mech., 66(4), 453-463. https://doi.org/10.12989/SEM.2018.66.4.453
- Haeri, H., Sarfarazi, V., Zhu, Z. and Lazemi, H.A. (2018b), "Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D", Struct. Eng. Mech., 67(5), 505-516. https://doi.org/10.12989/SEM.2018.67.5.505
- Haeri, H., Sarfarazi, V., Zhu, Z. and Marji, M.F. (2018c), "Simulation of the tensile failure behaviour of transversally bedding layers using PFC2D", Struct. Eng. Mech., 67(5), 493-504. https://doi.org/10.12989/SEM.2018.67.5.493
- Haeri, H., Sarfarazi, V. and Zhu, Z. (2018d), "PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test", Struct. Eng. Mech., 68(4), 497-505. https://doi.org/10.12989/SEM.2018.68.4.497
- Haeri, H., Sarfarazi, V. and Zhu, Z. (2018e), "Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D", Struct. Eng. Mech., 68(4), 507-517. https://doi.org/10.12989/SEM.2018.68.4.507
- Huang, T.H., Chang, C.S. and Chao, C.Y. (2002), "Experimental and mathematical modeling for fracture of rock joint with regular asperities", Eng. Fract. Mech., 69(17), 1977-1996. https://doi.org/10.1016/S0013-7944(02)00072-3
- Huang, D., Cen, D., Ma, G. and Huang, R. (2015), "Step-path failure of rock slopes with intermittent joints", Landslides, 12(5), 911-926. https://doi.org/10.1007/s10346-014-0517-6
- Huang, Y.H., Yang, S.Q. and Zhao, J. (2016), "Three-Dimensional Numerical Simulation on Triaxial Failure Mechanical Behavior of Rock-Like Specimen Containing Two Unparallel Fissures", Rock Mech. Rock Eng., 49(12), 4711-4729. https://doi.org/10.1007/s00603-016-1081-2
- Huang, Y.H., Yang, S.Q. and Zhao, J. (2017), "Strength failure behavior and crack evolution mechanism of granite containing pre-existing non-coplanar holes: experimental study and particle flow modeling", Comput. Geotech., 88, 182-198. https://doi.org/10.1016/j.compgeo.2017.03.015
- Huang, Y.H., Yang, S.Q. and Tian, W.L. (2019), "Crack coalescence behavior of sandstone specimen containing two pre-existing flaws under different confining pressures", Theor. Appl. Fract. Mech., 99, 118-130. https://doi.org/10.1016/j.tafmec.2018.11.013
- Huang, Y.H. and Yang, S.Q. (2019), "Mechanical and cracking behavior of granite containing two coplanar flaws under conventional triaxial compression", Int. J. Damage Mech., 28(4), 590-610. https://doi.org/10.1177/1056789518780214
- Jafari, M.K., Hosseini, K.A., Pellet, F., Boulon, M. and Buzzi, O. (2003), "Evaluation of shear strength of rock joints subjected to cyclic loading", Soil Dyn. Earthq. Eng., 23(7), 619-630. https://doi.org/10.1016/S0267-7261(03)00063-0
- Jafari, M.K., Pellet, F., Boulon, M. and Amini Hosseini, K. (2004), "Experimental study of mechanical behavior of rock joints under cyclic loading", Rock Mech. Rock Eng., 37(1), 3-23. https://doi.org/10.1007/s00603-003-0001-4
- Jiang, Y., Xiao, J., Tanabashi, Y. and Mizokamib, T. (2004) "Development of an automated servo-controlled direct shear apparatus applying a constant normal stiffness condition", Int. J. Rock Mech. Min. Sci., 41(2), 275-286. https://doi.org/10.1016/j.ijrmms.2003.08.004
- Johnston, I.W., Lam, T.S. and Williams, A.F. (1987), "Constant normal stiffness direct shear testing for socketed pile design in weak rock", Geotechnique 37(1), 83-89. https://doi.org/10.1680/geot.1987.37.1.83
- Kou, M.M., Lian, Y.J. and Wang, Y.T. (2019a), "Numerical investigations on crack propagation and crack branching in brittle solids under dynamic loading using bond-particle mode", Eng. Fract. Mech., 212, 41-56. https://doi.org/10.1016/j.engfracmech.2019.03.012
- Kou, M., Liu, X., Tang, S. and Wang, Y. (2019b), "3-D X-ray computed tomography on failure characteristics of rock-like materials under coupled hydro-mechanical loading", Theor. Appl. Fract. Mech., 104, 102396. https://doi.org/10.1016/j.tafmec.2019.102396
- Kou, M., Han, D., Xiao, C. and Wang, Y. (2019c), "Dynamic fracture instability in brittle materials: Insights from DEM simulations", Struct. Eng. Mech., 71(1), 65-75. https://doi.org/10.12989/SEM.2019.71.1.065
- Kou, M., Liu, X., and Wang, Y. (2020), "Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction. Structural Engineering and Mechanics", Struct. Eng. Mech., 74(2), 1-14.
- Lee, H.S., Park, Y.J., Cho, T.F. and You, K.H. (2001), "Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading", Int. J. Rock Mech. Min. Sci., 38(7), 967-980. https://doi.org/10.1016/S1365-1609(01)00060-0
- Li, X. and Chen, J. (2017). "An extended cohesive damage model for simulating arbitrary damage propagation in engineering materials", Comput. Methods Appl. Mech. Engrg., 315, 744-759. https://doi.org/10.1016/j.cma.2016.11.029
- Li, X., Gao, W. and Liu, W. (2019), "A mesh objective continuum damage model for quasi-brittle crack modelling and finite element implementation", Int. J. Damage Mech., 28(9), 1299-1322. https://doi.org/10.1177/1056789518823876
- Liu, Y., Dai, F., Zhao, T. and Xu, N.W. (2017), "Numerical investigation of the dynamic properties of intermittent jointed rock models subjected to cyclic uniaxial compression", Rock Mech. Rock Eng., 50(1), 89-112. https://doi.org/10.1007/s00603-016-1085-y
- Mehrian, S. Z., Amrei, S. R., Maniat, M. and Nowruzpour Mehrian, S.M. (2016), "Structural health monitoring using optimising algorithms based on flexibility matrix approach and combination of natural frequencies and mode shapes", Int. J. Struct. Eng., 7(4), 398-411. https://doi.org/10.1504/IJSTRUCTE.2016.079287
- Meng, F., Zhou, H., Li, S., Zhang, C., Wang, Z., Kong, L. and Zhang, L. (2016), "Shear behaviour and acoustic emission characteristics of different joints under various stress levels", Rock Mech. Rock Eng., 49(12), 4919-4928. https://doi.org/10.1007/s00603-016-1034-9
- Meng, F., Zhou, H., Wang, Z., Zhang, C., Li, S., Zhang, L. and Kong, L. (2018a), "Characteristics of asperity damage and its influence on the shear behavior of granite joints", Rock Mech. Rock Eng., 51(2), 429-449. https://doi.org/10.1007/s00603-017-1315-y
- Meng, F., Wong, L.N.Y., Zhou, H. and Wang, Z. (2018b), "Comparative study on dynamic shear behavior and failure mechanism of two types of granite joint", Eng. Geol., 245, 356-369. https://doi.org/10.1016/j.enggeo.2018.09.005
- Mirzaghorbanali, A, Nemcik, J. and Aziz, N. (2014a), "Effects of cyclic loading on the shear behavior of infilled rock joints under constant normal stiffness conditions", Rock Mech. Rock Eng., 47(4), 1373-1391. https://doi.org/10.1007/s00603-013-0452-1
- Mirzaghorbanali, A., Nemcik, J. and Aziz, N. (2014b), "Effect of shear rate on cyclic loading shear behavior of rock joints under constant normal stiffness conditions", Rock Mech. Rock Eng., 47(5), 1931-1938. https://doi.org/10.1007/s00603-013-0453-0
- Mohammed, T.J., Bakar, B.H.A. and Bunnori, A.B. (2015), "Strengthening of reinforced concrete beams subjected to torsion with UHPFC composites", Struct. Eng. Mech., 56(1), 123-136. https://doi.org/10.12989/sem.2015.56.1.123
- Moradian, Z.A., Ballivy, G., Rivard, P., Gravel, C. and Rousseau, B. (2010), "Evaluating damage during shear tests of rock joints using acoustic emission", Int. J. Rock Mech. Min. Sci., 47(4), 590-598. https://doi.org/10.1016/j.ijrmms.2010.01.004
- Moradian, Z.A., Ballivy, G. and Rivard, P. (2012), "Correlating acoustic emission sources with damaged zones during direct shear test of rock joints", Can. Geotech. J., 49(6), 710-718. https://doi.org/10.1139/t2012-029
- Moes, N. and Belytschko, T. (2002), "Extended finite element method for cohesive crack growth", Eng. Fract. Mech., 69(7), 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X
- Nanthakumar, S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, T. (2016), "Detection of ma-terial interfaces using a regularized level set method in piezoelectric structures", Inverse Probl. Sci. Eng., 24(1), 153-176. https://doi.org/10.1080/17415977.2015.1017485
- Nowruzpour, M., Sarkar, S., Reddy, J.N. and Roy, D. (2019), "A derivative-free upscaled theory for analysis of defects", J. Mech. Phys. Solids, 122, 89-501.
- Nowruzpour, M. and Reddy, J.N. (2018), "Unification of local and nonlocal models within a stable integral formulation for analysis of defects", Int. J. Eng. Sci., 132, 45-59. https://doi.org/10.1016/j.ijengsci.2018.06.008
- Nowruzpour Mehrian, S.M., Roozbahani, M.M. and Mehrian S.Z., Fathi, A. (2013), "Comprehensive Investigation in Buckling and Free Vibration of Laminate Composite cylindrical Shell", J. Bas. Appl. Sci. Res., 3(5), 195-205.
- Ooi, L.H. and Carter, J.P. (1987), "A constant normal stiffness direct shear device for static and cyclic loading", ASTM Geotech. Test J., 10(1), 3-12. https://doi.org/10.1520/GTJ10132J
- Park, J.W. and Song, J.J. (2009), "Numerical simulation of a direct shear test on a rock joint using a bonded-particle model", Int. J. Rock Mech. Min. Sci., 46(8), 1315-1328. https://doi.org/10.1016/j.ijrmms.2009.03.007
- Potyondy, D.O. and Cundall, P.A. (1998), "Modeling notch-formation mechanisms in the URL mine-by test tunnel using bonded assemblies of circular particles", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 35(4-5), 510-511. https://doi.org/10.1016/S0148-9062(98)00083-7
- Potyondy D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
- PFC2D (2004), "Particle Flow Code in 2 Dimensions-Version 3.1", Itasca Cons Group, Minneapolis.
- Sarfarazi, V. and Haeri, H. (2018), "Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)", Struct. Eng. Mech., 68(5), 537-547. https://doi.org/10.12989/SEM.2018.68.5.537
- Seidel, J.P. and Haberfield, C.M. (2002), "A theoretical model for rock joints subjected to constant normal stiffness direct shear", Int. J. Rock Mech. Min. Sci., 39(5), 539-553. https://doi.org/10.1016/S1365-1609(02)00056-4
- Song, Z., Konietzky, H. and Herbst, M. (2019), "Bonded-particle model-based simulation of artificial rock subjected to cyclic loading", Acta Geotech., 14(4), 955-971. https://doi.org/10.1007/s11440-018-0723-9
- Song, Z., Fruhwirt, T. and Konietzky, H. (2020), "Inhomogeneous mechanical behaviour of concrete subjected to monotonic and cyclic loading", Int J Fatigue, 132, 105383. https://doi.org/10.1016/j.ijfatigue.2019.105383
- Wang, Y., Zhou, X. and Xu, X. (2016), "Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics", Eng. Fract. Mech., 163, 248-273. https://doi.org/10.1016/j.engfracmech.2016.06.013
- Wang, Y., Zhou, X. and Shou, Y. (2017), "The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics", Int. J. Mech. Sci., 128-129, 614-643. https://doi.org/10.1016/j.ijmecsci.2017.05.019
- Wang, Y., Zhou, X., Wang, Y. and Shou, Y. (2018a), "A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids", Int. J. Solids Struct., 134, 89-115. https://doi.org/10.1016/j.ijsolstr.2017.10.022
- Wang, Y., Zhou, X. and Kou, M. (2018b), "Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles", Ceram. Int., 44(10), 11512-11542. https://doi.org/10.1016/j.ceramint.2018.03.214
- Wang, Y., Zhou, X. and Kou, M. (2018c), "Numerical studies on thermal shock crack branching instability in brittle solids", Eng. Fract. Mech., 204, 157-184. https://doi.org/10.1016/j.engfracmech.2018.08.028
- Wang, Y., Zhou, X. and Kou, M. (2018d), "A coupled thermo-mechanical bond-based peridynamics for simulating thermal cracking in rocks", Int. J. Fract., 211(1-2), 13-42 https://doi.org/10.1007/s10704-018-0273-z
- Wang, Y., Zhou, X. and Kou, M. (2019a), "Three-dimensional numerical study on the failure characteristics of intermittent fissures under compressive-shear loads", Acta Geotech., 14(4), 1161-1193 https://doi.org/10.1007/s11440-018-0709-7
- Wang, Y., Zhou, X. and Kou, M. (2019b), "An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks.", Eur. J. Mech. A-Solid, 73, 282-305 https://doi.org/10.1016/j.euromechsol.2018.09.007
- Wang, L., Xu, J., Wang, J. and Karihaloo, B.L. (2019c), "A mechanism-based spatiotemporal non-local constitutive formulation -for elastodynamics of composites", Mech. Mater., 128, 105-116. https://doi.org/10.1016/j.mechmat.2018.07.013
- Wang, L., Xu, J. and Wang, J. (2019d), "Elastodynamics of Linearized Isotropic State-Based Peridynamic Media", J. Elast., 137, 157-176. https://doi.org/10.1007/s10659-018-09723-7
- Xie, Y., Cao, P., Liu, J. and Dong, L. (2016), "Influence of crack surface friction on crack initiation and propagation: A numerical investigation based on extended finite element method", Comput. Geotech., 74, 1-14 https://doi.org/10.1016/j.compgeo.2015.12.013
- Yang, Z.Y., Di, C.C. and Yen, K.C. (2001), "The effect of asperity order on the roughness of rock joints", Int. J. Rock Mech. Min. Sci., 38(5), 745-752 https://doi.org/10.1016/S1365-1609(01)00032-6
- Yang, D., Zhang, D., Niu, S., Dang, Y., Feng, W. and Ge, S. (2018) "Experiment and study on mechanical property of sandstone post-peak under the cyclic loading and unloading", Geotech. Geol. Eng., 36(3), 1609-1620. https://doi.org/10.1007/s10706-017-0414-6
- Zhang, X.P. and Wong, L.N.Y. (2012), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach", Rock Mech. Rock Eng., 45(5), 711-737. https://doi.org/10.1007/s00603-011-0176-z
- Zheng, B. and Qi, S. (2012), "A new index to describe joint roughness coefficient (JRC) under cyclic shear", Eng. Geol., 212, 72-85. https://doi.org/10.1016/j.enggeo.2016.07.017
- Zhou, H., Meng, F., Zhang, C., Hu, D., Lu, J. and Xu, R (2016) "Investigation of the acoustic emission characteristics of artificial saw-tooth joints under shearing condition", Acta Geotech., 11(4), 925-939. https://doi.org/10.1007/s11440-014-0359-3
- Zhou, X.P. and Wang, Y.T. (2016) "Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics", Int. J. Rock Mech. Min. Sci., 89, 235-249. https://doi.org/10.1016/j.ijrmms.2016.09.010
- Zhou, X., Wang, Y., Shou, Y. and Kou, M. (2018), "A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads", Eng. Fract. Mech., 188, 151-183. https://doi.org/10.1016/j.engfracmech.2017.07.031
- Zhou, Z., Cai, X., Li, X., Cao, W. and Du, X. (2019a), "Dynamic Response and Energy Evolution of Sandstone Under Coupled Static-Dynamic Compression: Insights from Experimental Study into Deep Rock Engineering Applications", Rock Mech. Rock Eng., 1-27.
- Zhou, Z., Wang, H., Cai, X., Chen, L., Yude, E. and Chen, R. (2019b), "Damage Evolution and Failure Behavior of Post-Mainshock Damaged Rocks under Aftershock Effects", Energies, 12(23), 4429. https://doi.org/10.3390/en12234429
- Zhou, X.P., Wang, Y.T., Zhang, J.Z. and Kou, M.M. (2019c), "Fracturing behavior study of three-flawed specimens by uniaxial compression and 3D digital image correlation: sensitivity to brittleness", Rock Mech. Rock Eng., 52(3), 691-718. https://doi.org/10.1007/s00603-018-1600-4