DOI QR코드

DOI QR Code

Time harmonic interactions in non local thermoelastic solid with two temperatures

  • Lata, Parveen (Department of Basic and applied Sciences, Punjabi University Patiala) ;
  • Singh, Sukhveer (Punjabi University APS Neighbourhood Campus)
  • 투고 : 2019.08.29
  • 심사 : 2019.12.12
  • 발행 : 2020.05.10

초록

The present investigation is concerned with two dimensional deformation in a non local thermoelastic solid with two temperatures due to time harmonic sources. The nonlocal thermoelastic solid is homogeneous with the effect of two temperature parameters. Fourier transforms are used to solve the problem. The bounding surface is subjected to concentrated and distributed sources. The analytical expressions of displacement, stress components and conductive temperature are obtained in the transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerical simulated results are depicted graphically to show the effect of nonlocal parameter and frequency on the components of displacements, stresses and conductive temperature. Some special cases are also deduced from the present investigation.

키워드

참고문헌

  1. Abbas, I.A. and Zenkour, A.M. (2014), "Two temperature generalized thermoelastic interaction in an infinite fibre- reinforced anisotropic plate containing a circular cavity with two relaxation times", J. Comput. Theoretical Nanosci., 11(1), 1-7. https://doi.org/10.1166/jctn.2014.3309.
  2. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  3. Artan, R. (1996), "Nonlocal elastic half plane loaded by a concentrated force", J. Eng. Sci., 34(8), 943-950. https://doi.org/10.1016/0020-7225(95)00132-8.
  4. Atwa, S.Y. and Jahangir, A. (2014), "Two temperature effects on plane waves in generalized thermo-microstretch elastic solid", J. Thermophys., 35(1), 175-193. https://doi.org/10.1007/s10765-013-1541-9.
  5. Belkorissat, I., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new non-local refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063.
  6. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695.
  7. Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory" Adv. Aircraft Spacecraft Sci., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001.
  8. Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457.
  9. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  10. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  11. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A., Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  12. Boutaleb, S., Benrahou, K.A., Bakora, A., Bousahla, A.A, Tounsi, A., Tounsi, A. and Mahmoud, S.R.. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.189.
  13. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A., Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  14. Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", J. Appl. Math. Phys., 19, 614-627. https://doi.org/10.1007/BF01594969.
  15. Ebrahimi, F and Shafiei, N. (2016), "Application of eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837.
  16. Edelen, D.G.B, Green, A.E. and Laws, N. (1971), "Nonlocal continuum mechanics", Arch. Rational Mech. Anal., 43, 36-44. https://doi.org/10.1007/BF00251543.
  17. Edelen, D.G.B. and Laws, N. (1971), "On the thermodynamics of systems with nonlocality", Arch. Rational Mech. Anal., 43, 24-35. https://doi.org/10.1007/BF00251543.
  18. Eringen, A.C. (2002), Nonlocal Continum Field Theories, Springer, New York, USA.
  19. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  20. Hassan, M., Marin, M., Ellahi, R. and Almari, S.Z. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Transfer Res., 49(18), 1837-1848. https://doi.org/ 10.1615/HeatTransRes.2018025569.
  21. Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of laplace transform", J. Comput. Appl. Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X.
  22. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
  23. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  24. Karami, B., Janghorban, M. and Tounsi, A. (2019b),"Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  25. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysus of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391.
  26. Kroner, E. (1967), "Elasticity theory of materials with long range cohesive forces", J. Solids Struct., 3, 731-742. https://doi.org/10.1016/0020-7683(67)90049-2.
  27. Kumar, R., Sharma, N. and Lata, P. (2016a), "Thermomechanical interactions in the transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Modelling, 40, 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061.
  28. Kumar, R., Sharma, N. and Lata, P. (2016b), "Effects of Hall current in a transversely isotropic magnetothermoelastic two temperature medium with rotation and with and without energy dissipation due to normal force", Struct. Eng. Mech., 57(1), 91-103. https://doi.org/10.12989/sem.2016.57.1.091.
  29. Lata, P and Singh, S. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., 33(1), 123-131. https://doi.org/10.12989/scs.2019.33.1.123.
  30. Lata, P. (2018a), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66(1), 113-124. https://doi.org/10.12989/sem.2018.66.1.113.
  31. Lata, P. (2018b), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(2), 439-451. https://doi.org/10.12989/scs.2018.27.4.439.
  32. Marin, M. (1997), "An uniqueness result for body with voids in linear thermoelasticity", Rendiconti di Matematica, Roma, 17(7), 103-113.
  33. Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045.
  34. Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos Part B Eng., 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063.
  35. Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Nonsimple material problems addressed by the Lagrange's identity", Boundary Value Problems, 135, 1-14. https://doi.org/10.1186/1687-2770-2013-135.
  36. Marin, M., Baleanu, D. and Vlase, S. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381.
  37. Marin, M., Ellahi, R. and Chirila, A. (2017b), "On solutions of saint-venant's problem for elastic dipolar bodies with voids", Carpathian J. Math., 33(2), 219-232. www.jstor.org/stable/90017791. https://doi.org/10.37193/CJM.2017.02.09
  38. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  39. Mokhtar, Y., Heireche, H., Bousahla, A. A., Houari, M.S.A, Tounsi, A. and Mahmoud S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397.
  40. Othman, M.I.A. and Abbas, I.A. (2012), "Generalized thermoelasticity of thermal-shock problem in a non-homogeneous isotropic hollow cylinder with energy dissipation", J. Thermophys., 33, 913-923. https://doi.org/10.1007/s10765-012-1202-4.
  41. Othman, M.I.A. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
  42. Othman, M.I.A., Atwa, S.Y., Jahangir, A. and Khan A. (2015), "The effect of rotation on plane waves in generalized thermo-microstretch elastic solid for a mode-I crack under green naghdi theory", J. Comput. Theoretical Nanosci. ,12(11), 4987-4997. https://doi.org/10.1166/jctn.2015.4022.
  43. Polizzotto, C. (2001), "Nonlocal elasticity and related variational principles", J. Solids Struct., 38, 7359-7380. https://doi.org/10.1016/S0020-7683(01)00039-7.
  44. Press W.H., Teukolshy S.A., Vellerling W.T. and Flannery B.P. (1986), Numerical Recipes in Fortran, Cambridge University Press, Cambridge, United Kingdom.
  45. Said, S.M. and Othman, M.I.A. (2016), "Wave propagation in a two-temperature fibre-reinforced magneto-thermoelastic medium with three-phase-lag-model", Struct. Eng. Mech., 57(2), 201-220. https://doi.org/10.12989/sem.2016.57.2.201.
  46. Sharma, N., Kumar, R. and Lata, P. (2015), "Thermomechanical response of transversely isotropic thermoelastic solids with two temperature and without energy dissipation due to time harmonic sources", Mater. Phys. Mech., 22, 107-117. www.ipme.ru/e-journals/MPM/no_22215/MPM222_02_kumar.html.
  47. Sharma, N., Kumar, R. and Ram, P. (2008), "Dynamical behavior of generalized thermoelastic diffusion with two relaxation times in frequency domain", Struct. Eng. Mech., 28(1), 19-38. https://doi.org/10.12989/sem.2008.28.1.039.
  48. Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
  49. Soleimani, A., Dastani, K., Hadi, A. and Naei, M.H. (2019), "Effect of out of plane defects on the postbuckling behaviour of graphene sheets based on nonlocal elasticity theory", Steel Compos. Struct., 30(6), 517-534. https://doi.org/10.12989/scs.2019.30.6.517.
  50. Vasiliev, V.V. and Lurie, S.A. (2016), "On correct nonlocal generalized theories of elasticity", Physical Mesomechanics, 19(3), 47-59. https://doi.org/10.1134/S102995991603005X.
  51. Wang, J. and Dhaliwal, R.S. (1993), "On some theorems in the nonlocal theory of micropolar elasticity", J. Solids Struct., 30(10), 1331-1338. https://doi.org/10.1016/0020-7683(93)90215-S.
  52. Youssef, H.M. (2005), "Theory of two-temperature-generalized thermoelasticity", IMA J. Appl. Math., 71, 383-390. https://doi.org/10.1093/imamat/hxh101.
  53. Youssef, H.M. and Al-Lehaibi, E.A. (2007), "State space approach of two-temperature generalized thermoelasticity of one-dimensional problem", J. Solids Struct., 44, 1550-1562. https://doi.org/10.1016/j.ijsolstr.2006.06.035.
  54. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.

피인용 문헌

  1. A dual-phase-lag theory of thermal wave in a porothermoelastic nanoscale material by FEM vol.79, pp.1, 2020, https://doi.org/10.12989/sem.2021.79.1.001