DOI QR코드

DOI QR Code

New form of perforated steel plate shear wall in simple frames using topology optimization

  • Received : 2019.01.18
  • Accepted : 2019.08.27
  • Published : 2020.05.10

Abstract

This study presents a practical application of topology optimization (TO) technique to seek the best form of perforated steel plate shear walls (PSPSW) in simple frames. For the numerical investigation, a finite element model is proposed based on the recent particular form of PSPSW that is called the ring-shaped steel plate shear wall. The TO is applied based on the sensitivity analysis to maximize the reaction forces as the objective function considering the fracture tendency. For this purpose, TO is conducted under a monotonic and cyclic loading considering the nonlinear behavior (material and geometry) and buckling. Also, the effect of plate thickness is studied on the TO results. The final material volume of the optimized plate is limited to the material volume of the ring-shaped plate. Finally, an optimized plate is introduced and its nonlinear behavior is investigated under a cyclic and monotonic loading. For a more comprehensive view, the results are compared to the ring-shaped and four usual forms of SPSWs. The material volume of the plate for all the models is the same. The results indicate the strength, load-carrying, and energy dissipation in the optimized plate are increased while the fracture tendency is reduced without changing the material volume.

Keywords

References

  1. ABAQUS (2014), V.6-14, Analysis User's Manual, Dassault Systemes Simulia, Providence, RI, U.S.A.
  2. Ansola, R., Canales, J., Tarrago, J.A. and Rasmussen, J. (2002), "An integrated approach for shape and topology optimization of shell structures", Comput. Struct., 50(5), 449-548. https://doi.org/10.1016/S0045-7949(02)00019-6.
  3. ATC24 (1992), Guidelines for cyclic seismic testing of components of steel structures for buildings, Applied Technology Council, Redwood City, CA, U.S.A.
  4. Bagherinejad, M.H. and Haghollahi, A. (2018), "Topology optimization of steel plate shear walls in the moment frames", Steel Compos. Struct., 29(6), 767-779. https://doi.org/10.12989/scs.2018.29.6.771.
  5. Bendsoe, M. and Sigmund, O. (2003), Topology Optimization: Theory, Methods, and Applications, Springer-Verlag Berlin Heidelberg, New York, NY, U.S.A.
  6. Bendsoe, M.P. (1989), "Optimal shape design as a material distribution problem", Struct. Optim., 1(4), 193-202. https://doi.org/10.1007/BF01650949.
  7. Berman, J.W. and Bruneau, M. (2005), "Experimental investigation of light-gauge steel plate shear walls", J. Struct. Eng., 131(2), 259-267. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:2(259).
  8. Bhowmick, A.K., Grondin, G.Y. and Driver, R.G. (2014), "Nonlinear seismic analysis of perforated steel plate shear walls", J. Constr. Steel Res., 94, 103-113. https://doi.org/10.1016/j.jcsr.2013.11.006.
  9. Buhl, T., Pedersen, C.B.W. and Sigmund, O. (2000), "Stiffness design of geometrically nonlinear structures using topology optimization", Struct. Multidiscip. Optim., 19(2), 93-104. https://doi.org/10.1007/s001580050089.
  10. Chan, R., Albermani, F. and Kitipornchai, S. (2011), "Stiffness and strength of perforated steel plate shear wall", Proced. Eng., 14, 675-679. https://doi.org/10.1016/j.proeng.2011.07.086.
  11. Dang, H., Lee, D. and Lee, K. (2017), "Single and multi-material topology optimization of CFRP composites to retrofit beam-column connection", Comput. Concr., 19(4), 405-411. https://doi.org/10.12989/cac.2017.19.4.405.
  12. Dehghani, M., Mashayekhi, M. and Salajegheh, E. (2016), "Topology optimization of double-and triple-layer grids using a hybrid methodology", Eng. Optim., 48(8), 1333-1349. https://doi.org/10.1080/0305215X.2015.1105968.
  13. Egorova, N. (2013), "Experimental study of ring-shaped steel plate shear walls", M.Sc. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A.
  14. Egorova, N., Eatherton, M.R. and Maurya, A. (2014), "Experimental study of ring-shaped steel plate shear walls", J. Constr. Steel Res., 103, 179-189. https://doi.org/10.1016/j.jcsr.2014.09.002.
  15. Elgaaly, M. (1998), "Thin steel plate shear walls behavior and analysis", Thin-Walled Struct., 32(1), 151-180. https://doi.org/10.1016/S0263-8231(98)00031-7.
  16. Formisano, A., Lombardi, L. and Mazzolani, F.M. (2016), "Perforated metal shear panels as bracing devices of seismic-resistant structures", J. Constr. Steel Res., 126, 37-49. https://doi.org/10.1016/j.jcsr.2016.07.006.
  17. Gholizadeh, S. and Barati, H. (2014), "Topology optimization of nonlinear single layer domes by a new metaheuristic", Steel Compos. Struct., 16(6), 681-701. https://doi.org/10.12989/scs.2014.16.6.681.
  18. Hassani, B. and Hinton, E. (1999), Homogenization and structural topology optimization, Springer-Verlag, London, United Kingdom.
  19. Huang, X. and Xie, Y. (2010), "Evolutionary topology optimization of geometrically and materially nonlinear structures under prescribed", Struct. Eng. Mech., 34(5), 581-595. https://doi.org/10.12989/sem.2010.34.5.581.
  20. Jansseune, A. and Corte, W.D. (2017), "The influence of convoy loading on the optimized topology of railway bridges", Struct. Eng. Mech., 64(1), 45-58. https://doi.org/10.12989/sem.2017.64.1.045.
  21. Jung, D. and Gea, H.C. (2004), "Topology optimization of nonlinear structures", Finite Elem. Anal. Des., 40(11), 3443-3459. https://doi.org/10.1016/j.finel.2003.08.011.
  22. Kabus, S. and Pedersen, C.B.W. (2012), "Optimal Bearing Housing Designing Using Topology Optimization", J. Tribol., 134(2), 1-9. https://doi.org/10.1115/1.4005951.
  23. Kaveh, A., Hassani, B., Shojaee, S. and Tavakkoli, S.M. (2008), "Structural topology optimization using ant colony methodology", Eng. Struct., 30(9), 2559-2565. https://doi.org/10.1016/j.engstruct.2008.02.012.
  24. Khatibinia, M. and Khosravi, S. (2014), "A hybrid approach based on an improved gravitational search algorithm and orthogonal crossover for optimal shape design of concrete gravity dams", Appl. Soft. Comput., 16, 223-233. https://doi.org/10.1016/j.asoc.2013.12.008.
  25. Khatibinia, M., Roodsarabi, M. and Barati, M. (2018), "Topology optimization of plane structures using binary level set method and isogeometric analysis", Int. J. Optim. Civil Eng., 8(2), 209-226. http://ijoce.iust.ac.ir/article-1-341-en.html.
  26. Kiani, J. and Tsavdaridis, K. (2018), "The Effect of Geometric Nonlinearity on the Seismic Performance of Steel Plate Shear Wall (SPSW) Systems", Iranian J. Struct. Eng., 4(2).
  27. Kutylowski, R. and Rasiak, B. (2014), "Application of topology optimization to bridge girder design", Struct. Eng. Mech., 51(1), 39-66. https://doi.org/10.12989/sem.2014.51.1.039.
  28. Lee, E.H. and Park, J. (2001), "Structural design using topology and shape optimization", Struct. Eng. Mech., 38(4), 517-527. https://doi.org/10.12989/sem.2011.38.4.517.
  29. Liu, A., X.Huang, C.Huang, G, S., Yan, X. and Li, G. (2017), "Topological design of structures under dynamic periodic loads", Eng. Struct., 142, 128-136. https://doi.org/10.1016/j.engstruct.2017.03.067.
  30. Long, C.S., Loveday, P.W. and Groenwold, A.A. (2009), "Effects of finite element formulation on optimal plate and shell structural topologies", Finite Elem. Anal. Des., 45(11), 817-825. https://doi.org/10.1016/j.finel.2009.06.027.
  31. Lu, X., Xu, J., Zhang, H. and Wei, P. (2017), "Topology optimization of the photovoltaic panel connector in high-rise buildings", Struct. Eng. Mech., 62(4), 465-475. https://doi.org/10.12989/sem.2017.62.4.465.
  32. Mashayekhi, M., Salajegheh, E. and Dehghani, M. (2016), "Topology optimization of double and triple layer grid structures using a modified gravitational harmony search algorithm with efficient member grouping strategy", Comput. Struct., 172, 40-58. https://doi.org/10.1016/j.compstruc.2016.05.008.
  33. Matteis, G.D., Sarracco, G. and Brando, G. (2016), "Experimental tests and optimization rules for steel perforated shear panels", J. Constr. Steel Res., 123, 41-52. https://doi.org/10.1016/j.jcsr.2016.04.025.
  34. Maurya, A. (2012), "Computational simulation and analytical development of buckling resistant steel plate shear wall (br-spsw)", M.Sc. Dissertation, Virginia Polytechnic Institute and State University Blacksburg, VA, U.S.A. http://hdl.handle.net/10919/34466.
  35. Maurya, A., Egorova, N. and Eatherton, M.R. (2013), "Development of ring-shaped steel plate shear walls", Proceedings of the 2013 ASCE Structures Congress, Pittsburgh, May.
  36. Maute, K., Schwarz, S. and Ramm, E. (1998), "Adaptive topology optimization of elastoplastic structures", Struct. Optim., 15(2), 81-91. https://doi.org/10.1007/BF01278493.
  37. Roberts, T.M. and Ghomi, S.S. (1998), "Hysteretic characteristics of unstiffened plate shear panels", Thin-Walled Struct., 12(2), 145-162. https://doi.org/10.1016/0263-8231(91)90061-M.
  38. Roodsarabi, M., Khatibinia, M. and Sarafrazi, S. (2016), "Isogeometric topology optimization of structures using level set method incorporating sensitivity analysis", Int. J. Optim. Civil Eng., 6(3), 405-422. http://ijoce.iust.ac.ir/article-1-259-en.html.
  39. Roodsarabi, M., Khatibinia, M. and Sarafrazi, S.R. (2016), "Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization", Steel Compos. Struct., 21(6), 1389-1410. http://dx.doi.org/10.12989/scs.2016.21.6.1389.
  40. Seyedpoor, S. and Gholizadeh, S. (2008), "Optimum shape design of arch dams by a combination of simultaneous perturbation stochastic approximation and genetic algorithm methods", Adv. Struct. Eng., 11(5), 501-510. https://doi.org/10.1260%2F136943308786412069. https://doi.org/10.1260/136943308786412069
  41. Shekastehband, B., Azaraxsh, A.A. and Showkati, H. (2017), "Hysteretic behavior of perforated steel plate shear walls with beam-only connected infill plates", Steel Compos. Struct., 25(4), 505-521. https://doi.org/10.12989/scs.2017.25.4.505.
  42. Sondergaard, M.B. and Pedersen, C.B.W. (2014), "Applied topology optimization of vibro-acoustic hearing instrument models", J. Sound Vib., 333(3), 683-692. https://doi.org/10.1016/j.jsv.2013.09.029.
  43. Svanberg, K. (1987), "The method of moving asymptotes - A new method for structural optimization", Int. J. Numer. Meth. Eng., 24(2), 359-373. https://doi.org/10.1002/nme.1620240207.
  44. Tang, J., Xie, Y.M. and Felicetti, P. (2014), "Conceptual design of buildings subjected to wind load by using topology optimization", Wind Struct., 18(1), 021-035. https://doi.org/10.12989/was.2014.18.1.021.
  45. Tenek, L.H. and Hagiwara, I. (1994), "Optimal rectangular plate and shallow shell topologies using thickness distribution or homogenization", Comput. Meth. Appl. Mech. Eng., 115(1), 111-124. https://doi.org/10.1016/0045-7825(94)90190-2.
  46. TOSCA (2013), V.8.0, Tosca Structure Documentation, Dassault Systemes Company, Karlsruhe, Baden-Wurttemberg, Germany.
  47. Tsavdaridis, K.D., Kingman, J.J. and Toropov, V.V. (2015), "Application of structural topology optimisation to perforated steel beams", Comput. Struct., 158, 108-123. https://doi.org/10.1016/j.compstruc.2015.05.004.
  48. Valizadeh, H., Sheidaii, M. and Showkati, H. (2012), "Experimental investigation on cyclic behavior of perforated steel plate shear walls", J. Constr. Steel Res., 70, 308-316. https://doi.org/10.1016/j.jcsr.2011.09.016.
  49. Vatansever, C. and Yardimci, N. (2011), "Experimental investigation of thin steel plate shear walls with different infill-to-boundary frame connections", Steel Compos. Struct., 11(3), 251-271. https://doi.org/10.12989/scs.2011.11.3.251.
  50. Vian, D., Bruneau, M., Tsai, K.C. and Lin, Y.C. (2009), "Special perforated steel plate shear walls with reduced beam section anchor beams. I: Experimental investigation", J. Struct. Eng., 135(3), 211-220. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(211).
  51. Wang, M., Yang, W., Shi, Y. and Xu, J. (2015), "Seismic behaviors of steel plate shear wall structures with construction details and materials", J. Constr. Steel Res., 107, 194-210. https://doi.org/10.1016/j.jcsr.2015.01.007.
  52. Ye, H.L., Wang, W.W., Chen, N. and Sui, Y.K. (2016), "Plate/shell topological optimization subjected to linear buckling constraints by adopting composite exponential filtering function", Acta Mech. Sin., 32(4), 649-658. https://doi.org/10.1007/s10409-015-0531-5.
  53. Yi, J., Rong, J., Zeng, T. and Huang, X. (2013), "A topology optimization method of multiple load cases and constraints based on element independent nodal density", Struct. Eng. Mech., 45(6), 759-777. https://doi.org/10.12989/sem.2013.45.6.759.
  54. Yuge, K. and Kikuchi, N. (1995), "Optimization of a frame structure subjected to a plastic deformation", Struct. Optim., 10(3), 197-208. https://doi.org/10.1007/BF01742592.
  55. Zhao, X., Liu, Y., Hua, L. and Mao, H. (2016), "Finite element analysis and topology optimization of a 12000KN fine blanking press frame", Struct. Multidiscip. Optim., 54(2), 375-389. https://doi.org/10.1007/s00158-016-1407-4.
  56. Zhou, K. (2016), "Topology optimization of bracing systems using a truss-like material model", Struct. Eng. Mech., 58(2), 231-242. https://doi.org/10.12989/sem.2016.58.2.231.