참고문헌
-
Ahmed, S., Kim, Y., 2019.
$PGE_2$ mediates cytoskeletal rearrangement of hemocytes via Cdc42, a small G protein, to activate actin remodeling factors in Spodoptera exigua (Lepidoptera: Noctuidae). Arch. Insect Biochem. Physiol. e21607, 1-17. - Ahn, Y., 2011. Evaluation of insecticide resistance of vector mosquitoes. Seoul National University, Seoul, Korea.
- Apte-Deshpande, A., Paingankar, M., Gokhale, M.D., Deobagkar, D.N., 2012. Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus. PLoS One 7, e40401. https://doi.org/10.1371/journal.pone.0040401
- Blandin, S., Shiao, S.-H., Moita, L.F., Janse, C.J., Waters, A.P., Kafatos, F.C., Levashina, E.A., 2004. Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116, 661-670 https://doi.org/10.1016/S0092-8674(04)00173-4
- Brown, L.D., Shapiro, L.L.M., Thompson, G.A., Estevez-Lao, T.Y., Hillyer, J.F., 2019. Transstadial immune activation in a mosquito: adults that emerge from infected larvae have stronger antibacterial activity in their hemocoel yet increased susceptibility to malaria infection. Ecol. Evol. 9, 6082-6095. https://doi.org/10.1002/ece3.5192
- Choi, S.Y., Oh, S.C., Cho, M.S., Paek, S.K., Kim, J.S., Kim, D.A., Gill, M.R., Youn, Y.N., Yu, Y.M., 2007. Bioassay of environment-friendly insecticides for management of mosquito, Culex pipiens molestus. Korean J. Appl. Entomol. 46, 261-267. https://doi.org/10.5656/KSAE.2007.46.2.261
- Ciocchetta, S., Prow, N.A., Darbro, J.M., Frentiu, F.D., Savino, S., Montarsi, F., Capelli, G., Aaskov, J.G., Devine, G.J., 2018. The new European invader Aedes (Finlaya) koreicus: a potential vector of chikungunya virus. Pathog. Glob. Health 112, 107-114. https://doi.org/10.1080/20477724.2018.1464780
- Dong, S., Kantor, A.M., Lin, J., Passarelli, A.L., Clem, R.J., Franz, A.W.E., 2016. Infection pattern and transmission potential of chikungunya virus in two New World laboratory-adapted Aedes aegypti strains. Sci. Rep. 6, 24729. https://doi.org/10.1038/srep24729
- Eom, S., Park, Y., Kim, H., Kim, Y., 2014. Development of a high efficient dual Bt-Plus insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. Biotechnol. 24, 507-521. https://doi.org/10.4014/jmb.1310.10116
- Harbach, R.E., 2007. The Culicidae (Diptera): a review of taxonomy, classification and phylogeny. Zootaxa 1668, 591-638. https://doi.org/10.11646/zootaxa.1668.1.28
- Jegal, S., Jun, H., Kim-Jeon, M.D., Park, S.H., Ahn, S.K., Lee, J., Gong, Y.W., Joo, K., Kwon, M.J., Roh, J.Y., Lee, W.G., Lee, W., Bahk, Y.Y., Kim, T.S., 2019. Three-year surveillance of culicine mosquitoes (Diptera: Culicidae) for flavivirus infections in Incheon Metropolitan City and Hwaseong-si of Gyeonggi-do Province, Republic of Korea. Acta Trop. 202, 105258.
- Jeong, Y.S., Lee, D.K., 2003. Prevalence and seasonal abundance of the dominant mosquito species in a large march near coast of Ulsan. Korean J. Appl. Entomol. 42, 125-132.
- Jung, S., Kim, Y., 2006. Synergistic effect of Xenorhabdus nematophila K1 and Bacillus thuringiensis subsp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Biol. Control 39, 201-209. https://doi.org/10.1016/j.biocontrol.2006.07.002
- Kang, S.H., Jang, S.A., Han, J.B., Seo, D.K., Song, C.H., Kim, M.K., Kim, Y.L., Choi, S.H., Kim, I.K., Kim, G.H., 2005. Comparative efficacy of mosquito repellents against Aedes albopictus (Diptera: Culicidae). Korean J. Appl. Entomol. 44, 243-249.
- Kil, M.R., Kim, D.A., Paek, S.K., Kim, J.S., Choi, S.Y., Jin, D.Y., Yu, Y.N., 2008. Characterization of Bacillus thuringiensis subsp. tohokuensis CAB167 isolate against mosquito larva. Korean J. Appl. Entomol. 47, 457-465. https://doi.org/10.5656/KSAE.2008.47.4.457
- Kim, E., Kim, Y., 2014. A report on mixed occurrence of tobacco whitefly (Bemisia tabaci) biotypes B and Q in Oriental melon farms in Kyungpook province, Korea. Korean J. Appl. Entomol. 53, 465-472. https://doi.org/10.5656/KSAE.2014.09.0.038
- Kim, H.C., Lee, K.W., Richards, R.S., Schleich, S.S., Herman, W.E., Klein, T.A., 2003. Seasonal prevalence of mosquitoes collected from light traps in Korea (1999-2000). Korean J. Entomol. 33, 9-16. https://doi.org/10.1111/j.1748-5967.2003.tb00043.x
- Kim, Y.K., Lee, C.M., Lee, J.B., Bae, S.B., 2012. Seasonal prevalence of mosquitoes and ecological characteristics of Anopheline larval occurrence in Gimpo, Gyeonggi Province, Republic of Korea. Korean J. Appl. Entomol. 51, 305-312. https://doi.org/10.5656/KSAE.2012.07.0.017
- Kim, Y., Stanley, D., Ahmed, S., An, C., 2018. Eicosanoid-mediated immunity in insects. Dev. Comp. Immunol. 83, 130-143. https://doi.org/10.1016/j.dci.2017.12.005
- King, J.G., 2020. Developmental and comparative perspectives on mosquito immunity. Dev. Comp. Immunol. 103, 103458. https://doi.org/10.1016/j.dci.2019.103458
- King, J.G., Hillyer, J.F., 2012. Infection-induced interaction between the mosquito circulatory and immune systems. PLoS Pathog. 8, e1003058. https://doi.org/10.1371/journal.ppat.1003058
- Kudom, A.A., 2015. Larval ecology of Anopheles coluzzii in Cape Coast, Ghana: water quality, nature of habitat and implication for larval control. Malar. J. 14, 447. https://doi.org/10.1186/s12936-015-0989-4
- Kurucz, K., Kiss, V., Zana, B., Jacab, F., Kemenesi, G., 2018. Filarial nematode (order: Spirurida) surveillance in urban habitats, in the city of Pecs (Hungary) Parasitol. Res. 117, 3355-3360. https://doi.org/10.1007/s00436-018-6066-5
- Kwon, H., Arends, B.R., Smith, R.C., 2017. Late-phase immune responses limiting oocyst survival are independent of TEP1 function yet display strain specific differences in Anopheles gambiae. Parasites Vectors 10, 1-9. https://doi.org/10.1186/s13071-016-1943-1
- League, G.P., Hillyer, J.F., 2016. Functional integration of the circulatory, immune, and respiratory systems in mosquito larvae: pathogen killing in the hemocyte-rich tracheal tufts. BMC Biol. 14.
- Lee, H.I., 2003. Taxonomic review and revised keys of the Korean mosquitoes (Diptera: Culicidae). Korean J. Entomol. 33, 39-52. https://doi.org/10.1111/j.1748-5967.2003.tb00047.x
- Lee, K.W., Gupta, R.K., Wilde, J.A., 1984. Collection of adult and larval mosquitoes in U.S. army compounds in the Republic of Korea during 1979-1983. Korean J. Parasitol. 22, 102-108. https://doi.org/10.3347/kjp.1984.22.1.102
- Lima, E.P., Goulart, M.O., Rolim Neto, M.L., 2015. Meta-analysis of studies on chemical, physical and biological agents in the control of Aedes aegypti. BMC Public Health 15, 858. https://doi.org/10.1186/s12889-015-2199-y
- Luplertlop, N., Surasombatpattana, P., Patramool, S., Dumas, E., Wasinpiyamongkol, L., Saune, L., Hamel, R., Bernard, E., Sereno, D., Thomas, F., Piquemal D, Yssel H, Briant L, Misse D., 2011. Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following infection with dengue virus. PLoS Pathog. 7, e1001252. https://doi.org/10.1371/journal.ppat.1001252
- Marini, G., Arnoldi, D., Baldacchino, F., Capelli, G., Guzzetta, G., Merler, S., Montarsi, F., Rizzoli, A., Rosa, R., 2019. First report of the influence of temperature on the bionomics and population dynamics of Aedes koreicus, a new invasive alien species in Europe. Parasit. Vectors 12, 524. https://doi.org/10.1186/s13071-019-3772-5
- Miles, J.A., 1964. Some ecological aspects of the problem of arthropod-borne animal viruses in the Western Pacific and South-East Asia regions. Bull. World Health Organ. 30, 197-210.
- Montarsi, F., Martini, S., Dal Pont, M., Delai, N., Ferro Milone, N., Mazzucato, M., Soppelsa, F., Cazzola, L., Cazzin, S., Ravagnan, S., Ciocchetta, S., Russo, F., Capelli, G., 2013. Distribution and habitat characterization of the recently introduced invasive mosquito Aedes koreicus [Hulecoeteomyia koreica], a new potential vector and pest in north-eastern Italy. Parasit. Vectors 6, 292. https://doi.org/10.1186/1756-3305-6-292
- Montarsi, F., Ciocchetta, S., Devine, G., Ravagnan, S., Mutinelli, F., Frangipane di Regalbono, A., Otranto, D., Capelli, G., 2015. Development of Dirofilaria immitis within the mosquito Aedes (Finlaya) koreicus, a new invasive species for Europe. Parasit. Vectors 8, 177. https://doi.org/10.1186/s13071-015-0800-y
- Moreno-Garcia, M., Vargas, V., Ramirez-Bello, I., Hernandez-Martinez, G., Lanz-Mendoza, H., 2015. Bacterial exposure at the larval stage induced sexual immune dimorphism and priming in adult Aedes aegypti mosquitoes. PLoS One 10, e0133240. https://doi.org/10.1371/journal.pone.0133240
- Pakpour, N., Camp, L., Smithers, H.M., Wang, B., Tu, Z., Nadler, S.A., Luckhart, S., 2013. Protein kinase C-dependent signaling controls the midgut epithelial barrier to malaria parasite infection in anopheline mosquitoes. PLoS One 8, e76535. https://doi.org/10.1371/journal.pone.0076535
- Park, Y., 2015. Entomopathogenic bacterium, Xenorhabdus nematophila and Photorhabdus luminescens, enhances Bacillus thuringiensis Cry4Ba toxicity against yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). J. Asia Pac. Entomol. 18, 459-463. https://doi.org/10.1016/j.aspen.2015.05.002
- Park, Y., Kim, Y., Yi, Y., 1999. Identification and characterization of a symbiotic bacterium associated Steinernema carpocapsae in Korea. J. Asia Pac. Entomol. 2, 105-111. https://doi.org/10.1016/S1226-8615(08)60038-2
- Park, Y., Jung, J., Kim, Y., 2016. A mixture of Bacillus thuringiensis subsp. israelensis with Xenorhabdus nematophila-cultured broth enhances toxicity against mosquitoes Aedes albopictus and Culex pipiens pallens. J. Econ. Entomol. 109, 1086-1093. https://doi.org/10.1093/jee/tow063
-
Sadekuzzaman, M.D., Kim, Y., 2017. Specific inhibition of Xenorhabdus hominickii, an entomopathogenic bacterium, against different types of host insect phospholipase
$A_2$ . J. Invertebr. Pathol. 149, 97-105. https://doi.org/10.1016/j.jip.2017.08.009 - SAS Institute, Inc., 1989. SAS/STAT User's Guide, release 6.03 Ed. SAS Institute, Cary, NC.
- Seo, S., Kim, Y., 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacteria (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Korean J. Appl. Entomol. 50, 171-178. https://doi.org/10.5656/KSAE.2011.07.0.24
- Seo, M.J., Gil, Y.J., Kim, T.H., Kim, H.J., Youn, Y.N., Yu, Y.M., 2010. Control effects against mosquitoes larva of Bacillus thuringiensis subsp. israelensis CAB199 isolate according to different formulations. Korean J. Appl. Entomol. 49, 151-158. https://doi.org/10.5656/KSAE.2010.49.2.151
-
Seo, S., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase
$A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78, 3816-3823. https://doi.org/10.1128/AEM.00301-12 - Sim, S., Ramirez, J.L., Dimopoulos, G., 2012. Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS Pathog. 8, e1002631. https://doi.org/10.1371/journal.ppat.1002631
- Stanley, D., Kim Y. 2019. Prostaglandins and other eicosanoids in insects: biosynthesis and biological actions. Front. Physiol. 9, 1927. https://doi.org/10.3389/fphys.2018.01927
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis, version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
- Wang, Z.Q., Perumaisamy, H., Wang, M., Shu, S., Ahn, Y.J., 2016. Larvicidal activity of Magnolia denudata seed hydrodistillate constituents and related compounds and liquid formulations towards two susceptible and two wild mosquito species. Pest Manag. Sci. 72, 897-906. https://doi.org/10.1002/ps.4064
- Whitfield, J., 2002. Portrait of a serial killer: a roundup of the history and biology of the malaria parasite. Nature https://doi.org/10.1038/news021001-6.
- Yeom, Y.S., 2017. Current status and outlook of mosquito-borne diseases in Korea. J. Korean Med. Assoc. 60, 468-474. https://doi.org/10.5124/jkma.2017.60.6.468
- Yu, H.S., Kim, H.C., 1989. Integrated control of vector mosquitoes with native fishes (Aplocheilus and Aphyocypris) and Bacillus thuringiensis (H-14) in natural rice fields of Korea. Korean J. Appl. Entomol. 28, 167-174.