Comparison of Regression Models for Estimating Ventilation Rate of Mechanically Ventilated Swine Farm

강제환기식 돈사의 환기량 추정을 위한 회귀모델의 비교

  • Jo, Gwanggon (Division of Animal Environment, National Institute of Animal Science (NIAS)) ;
  • Ha, Taehwan (Division of Animal Environment, National Institute of Animal Science (NIAS)) ;
  • Yoon, Sanghoo (Division of Mathematics and Big Data Science, Daegu University) ;
  • Jang, Yuna (Division of Animal Environment, National Institute of Animal Science (NIAS)) ;
  • Jung, Minwoong (Division of Animal Environment, National Institute of Animal Science (NIAS))
  • Received : 2019.11.20
  • Accepted : 2019.12.02
  • Published : 2020.01.31


To estimate the ventilation volume of mechanically ventilated swine farms, various regression models were applied, and errors were compared to select the regression model that can best simulate actual data. Linear regression, linear spline, polynomial regression (degrees 2 and 3), logistic curve, generalized additive model (GAM), and gompertz curve were compared. Overfitting models were excluded even when the error rate was small. The evaluation criteria were root mean square error (RMSE) and mean absolute percentage error (MAPE). The evaluation results indicated that degree 3 exhibited the lowest error rate; however, an overestimation contradiction was observed in a certain section. The logistic curve was the most stable and superior to all the models. In the estimation of ventilation volume by all of the models, the estimated ventilation volume of the logistic curve was the smallest except for the model with a large error rate and the overestimated model.


  1. Aarnink, A. J. A., A. Keen, J. H. M. Metz, L. Speelman, and M. W. A. Verstegen, 1995. Ammonia emission patterns during the growing periods of pigs housed on partially slatted floors. Journal of Agricultural Engineering Research 62(2): 105-116. doi:10.1006/jaer.1995.1069.
  2. Aarnink, A. J. A., A. J. Van Den Berg, A. Keen, P. Hoeksma, and M. W. A. Verstegen, 1996. Effect of slatted floor area on ammonia emission and on the excretory and lying behaviour of growing pigs. Journal of Agricultural and Engineering Research 64(4): 299-310. doi:10.1006/jaer.1996.0071.
  3. Abowei, M. F. N., A. C. Akinwande, and J. G. Akpa, 2019. Modelling cow-dung and grass-clippings isothermal continuous stirred co-digester for biogas production using modified Gompertz rate equation. European Journal of Engineering Research and Science 4(3): 196-202. doi: 10.24018/ejers.2019.4.3.1195.
  4. Archives American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), 1993. 1993 ASHRAE Handbook: fundamentals.
  5. Anthony, T. R., R. Altmaier, J. H. Park, and T. M. Peters, 2014. Modeled effectiveness of ventilation with contaminant control devices on indoor air quality in a swine farrowing facility. Journal of Occupational and Environmental Hygiene 11(7): 434-449. doi:10.1080/15459624.2013.875186.
  6. Breum, N. O., H. Takai, and H. B. Rom, 1990. Upward vs. downward ventilation air flow in a swine house. Transactions of the American Society of Agricultural Engineers 33(5): 1693-1699. doi:10.13031/2013.31528.
  7. Casey, K. D., R. S. Gates, E. F. Wheeler, H. Xin, Y. Liang, A. J. Pescatore, and M. J. Ford, 2008. On-farm ventilation fan performance evaluations and implications. Journal of Applied Poultry Research 17(2): 283-295. doi:10.3382/japr.2006-00055.
  8. Coyne, J. M., K. Matilainen, D. P. Berry, M. L. Sevon-Aimonen, E. A. Mantysaari, J. Juga, T. Serenius, and N. McHugh, 2017. Estimation of genetic (co)variances of Gompertz growth function parameters in pigs. Journal of Animal Breeding and Genetics 134(2): 136-143. doi: 10.1111/jbg.12237.
  9. Ecim-Djuric, O., and G. Topisirovic, 2010. Energy efficiency optimization of combined ventilation systems in livestock buildings. Energy and Buildings 42(8): 1165-1171. doi: 10.1016/j.enbuild.2009.10.035.
  10. Fuller, S. B., A. Sands, A. Haggerty, M. Karpelson, and R. J. Wood, 2013. Estimating attitude and wind velocity using biomimetic sensors on a microrobotic bee. In Proc. IEEE International Conference on Robotics and Automation, 1374-1380. doi:10.1109/ICRA.2013.6630750.
  11. Gompertz, B., 1825. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Proceedings of the Royal Society of London 2: 252-253. doi:10.1098/rspl.1815.0271.
  12. Hastie, T., and R. Tibshirani, 1986. Generalized additive models. Statistical Science 1(3): 297-310. doi:10.1214/ss/1177013604.
  13. Heber, A. J., J. Q. Ni, T. T. Lim, C. A. Diehl, A. L. Sutton, R. K. Duggirala, B. L. Haymore, D. T. Kelly, and V. I. Adamchuk, 2000. Effect of a manure additive on ammonia emission from swine finishing buildings. Transactions of the American Society of Agricultural Engineers 43(6): 1895-1902. doi:10.13031/2013.3094.
  14. Holt, J., N. E. Selin, and S. Solomon, 2015. Changes in inorganic fine particulate matter sensitivities to precursors due to large-scale us emissions reductions. Environmental Science and Technology 49(8): 4834-4841. doi:10.1021/acs.est.5b00008.
  15. Kim, R. W., I. B. Lee, T. H. Ha, U. H. Yeo, S. Y. Lee, M. H. Lee, G. Y. Park, and J. G. Kim, 2017. Development of CFD model for predicting ventilation rate based on age of air theory using thermal distribution data in pig house. Journal of Korean Society of Agricultural Engineers 59(6): 61-71 (in Korean). doi:10.5389/KSAE.2017.59.6.061.
  16. Lever, J., M. Krzywinski, and N. Altman, 2016. Points of significance: Model selection and overfitting. Nature Methods 13(9): 703-704. doi:10.1038/nmeth.3968.
  17. Lim, T. T., A. J. Heber, J. Q. Ni, D. C. Kendall, and B. T. Richert, 2004. Effects of manure removal strategies on odor and gas emissions from swine finishing. Transactions of the American Society of Agricultural Engineers 47(6): 2041-2050. doi:10.13031/2013.17801.
  18. Moophayak, K., K. L. Sukontason, H. Kurahashi, R. C. Vogtsberger, and K. Sukontason, 2013. Evaluation of an I-box wind tunnel model for assessment of behavioral responses of blow flies. Parasitology Research 112(11): 3789-3798. doi:10.1007/s00436-013-3566-1.
  19. Nagula, M., 2016. Forecasting of fuel cell technology in hybrid and electric vehicles using Gompertz growth curve. Journal of Statistics and Management Systems 19(1): 73-88. doi:10.1080/09720510.2014.1001601.
  20. Ni, J. Q., A. J. Heber, T. T. Lim, C. A. Diehl, R. K. Duggirala, B. L. Haymore, and A. L. Sutton, 2000. Ammonia emission from a large mechanically-ventilated swine building during warm weather. Journal of Environmental Quality 29(3): 751-758. doi:10.2134/jeq2000.00472425002900030010x.
  21. Nikolaev, N., L. M. De Menezes, and H. Iba, 2002. Overfitting avoidance in genetic programming of polynomials. In Proc. Congress on Evolutionary Computation, 1209-1214. doi:10.1109/CEC.2002.1004415.
  22. National Institute of Environmental Research (NIER), 2016. National Air Pollutants Emission Service, (accessed 11.20.2019).
  23. Oh, B. W., S. W. Lee, H. C. Kim, and I. H. Seo, 2019. Analysis of working environment and ventilation efficiency in pig house using computational fluid dynamics. Journal of the Korean Society of Agricultural Engineers 61(2): 85-95 (in Korean). doi:10.5389/KSAE.2019.61.2.085.
  24. Park, S. G., and S. U. Lee, 2004. A software reliability growth model based on Gompertz growth curve. The Kips Transactions Part D 11D(7): 1451-1458 (in Korean). doi:10.3745/KIPSTD.2004.11D.7.1451.
  25. Pavlov, N., G. Spasov, A. Rahnev, and N. Kyurkchiev, 2018. A new class of Gompertz-type software reliability models. International Electronic Journal of Pure and Applied Mathematics 12(1): 43-57. doi:10.12732/iejpam.v12i1.4.
  26. Schiferl, L. D., C. L. Heald, J. B. Nowak, J. S. Holloway, J. A. Neuman, R. Bahreini, I. B. Pollack, T. B. Ryerson, C. Wiedinmyer, and J. G. Murphy, 2014. An investigation of ammonia and inorganic particulate matter in california during the calnex campaign. Journal of Geophysical Research 119(4): 1883-1902. doi:10.1002/2013JD020765.
  27. Seo, I. H., I. B. Lee, S. W. Hong, H. S. Hwang, J. P. Bitog, J. I. Yoo, K. S. Kwon, T. H. Ha, and H. T. Kim, 2008. Development of a CFD model to study ventilation efficiency of mechanically ventilated pig house. Journal of The Korean Society of Agricultural Engineers 50(1): 25-37 (in Korean). doi:10.5389/ksae.2008.50.1.025.
  28. Sharma, M., S. Kishore, S. N. Tripathi, and S. N. Behera, 2007. Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: A study at Kanpur, India. Journal of Atmospheric Chemistry 58(1): 1-17. doi: 10.1007/s10874-007-9074-x.
  29. Simmons, J. D., and B. D. Lott, 1997. Reduction of poultry ventilation fan output due to shutters. Applied Engineering in Agriculture 13(5): 671-673. doi:10.13031/2013.21646.
  30. Tang, L., L. Zhao, Y. Yang, and E. Lefeuvre, 2015. Equivalent circuit representation and analysis of gallopingbased wind energy harvesting. IEEE/ASME Transactions on Mechatronics 20(2): 834-844. doi:10.1109/TMECH.2014.2308182.
  31. Yoon, S. H., 2016. Generating high resolution of daily mean temperature using statistical models. Korean Data and Information Science Society 27(5): 1215-1224. doi: 10.7465/JKDI.2016.27.5.1215.
  32. Verhulst, P. F., 1847. Deuxieme memoire sur la loi d'accroissement de la population. Memoires de l'Academie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique 20: 1-32.
  33. Verification of Environmental Technologies for Agricultural Production (VERA), 2011. Test Protocol for Livestock Housing and Management Systems, 48.
  34. Zhu, J., L. Jacobson, D. Schmidt, and R. Nicolai, 2000. Daily variations in odor and gas emissions from animal facilities. Applied Engineering in Agriculture 16(2): 153-158. doi:10.13031/2013.5067.