DOI QR코드

DOI QR Code

Rev-erbα Negatively Regulates Osteoclast and Osteoblast Differentiation through p38 MAPK Signaling Pathway

  • Kim, Kabsun (Department of Pharmacology, Chonnam National University Medical School) ;
  • Kim, Jung Ha (Department of Pharmacology, Chonnam National University Medical School) ;
  • Kim, Inyoung (Department of Pharmacology, Chonnam National University Medical School) ;
  • Seong, Semun (Department of Pharmacology, Chonnam National University Medical School) ;
  • Kim, Nacksung (Department of Pharmacology, Chonnam National University Medical School)
  • 투고 : 2019.10.14
  • 심사 : 2019.12.01
  • 발행 : 2020.01.31

초록

The circadian clock regulates various physiological processes, including bone metabolism. The nuclear receptors Reverbs, comprising Rev-erbα and Rev-erbβ, play a key role as transcriptional regulators of the circadian clock. In this study, we demonstrate that Rev-erbs negatively regulate differentiation of osteoclasts and osteoblasts. The knockdown of Rev-erbα in osteoclast precursor cells enhanced receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation, as well as expression of nuclear factor of activated T cells 1 (NFATc1), osteoclast-associated receptor (OSCAR), and tartrate-resistant acid phosphatase (TRAP). The overexpression of Rev-erbα leads to attenuation of the NFATc1 expression via inhibition of recruitment of c-Fos to the NFATc1 promoter. The overexpression of Rev-erbα in osteoblast precursors attenuated the expression of osteoblast marker genes including Runx2, alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OC). Rev-erbα interfered with the recruitment of Runx2 to the promoter region of the target genes. Conversely, knockdown of Rev-erbα in the osteoblast precursors enhanced the osteoblast differentiation and function. In addition, Rev-erbα negatively regulated osteoclast and osteoblast differentiation by suppressing the p38 MAPK pathway. Furthermore, intraperitoneal administration of GSK4112, a Rev-erb agonist, protects RANKL-induced bone loss via inhibition of osteoclast differentiation in vivo. Taken together, our results demonstrate a molecular mechanism of Rev-erbs in the bone remodeling, and provide a molecular basis for a potential therapeutic target for treatment of bone disease characterized by excessive bone resorption.

키워드

참고문헌

  1. Bohm, C., Hayer, S., Kilian, A., Zaiss, M.M., Finger, S., Hess, A., Engelke, K., Kollias, G., Kronke, G., Zwerina, J., et al. (2009). The alpha-isoform of p38 MAPK specifically regulates arthritic bone loss. J. Immunol. 183, 5938-5947. https://doi.org/10.4049/jimmunol.0901026
  2. Cao, X. and Chen, D. (2005). The BMP signaling and in vivo bone formation. Gene 357, 1-8. https://doi.org/10.1016/j.gene.2005.06.017
  3. Day, T.F., Guo, X., Garrett-Beal, L., and Yang, Y. (2005). Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8, 739-750. https://doi.org/10.1016/j.devcel.2005.03.016
  4. Duez, H. and Staels, B. (2009). Rev-erb-alpha: an integrator of circadian rhythms and metabolism. J. Appl. Physiol. (1985) 107, 1972-1980. https://doi.org/10.1152/japplphysiol.00570.2009
  5. Fontaine, C., Dubois, G., Duguay, Y., Helledie, T., Vu-Dac, N., Gervois, P., Soncin, F., Mandrup, S., Fruchart, J.C., Fruchart-Najib, J., et al. (2003). The orphan nuclear receptor Rev-erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation. J. Biol. Chem. 278, 37672-37680. https://doi.org/10.1074/jbc.M304664200
  6. Fujihara, Y., Kondo, H., Noguchi, T., and Togari, A. (2014). Glucocorticoids mediate circadian timing in peripheral osteoclasts resulting in the circadian expression rhythm of osteoclast-related genes. Bone 61, 1-9. https://doi.org/10.1016/j.bone.2013.12.026
  7. Greenblatt, M.B., Shim, J.H., Zou, W., Sitara, D., Schweitzer, M., Hu, D., Lotinun, S., Sano, Y., Baron, R., Park, J.M., et al. (2010). The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J. Clin. Invest. 120, 2457-2473. https://doi.org/10.1172/JCI42285
  8. Harding, H.P. and Lazar, M.A. (1993). The orphan receptor Rev-erbA alpha activates transcription via a novel response element. Mol. Cell. Biol. 13, 3113-3121. https://doi.org/10.1128/MCB.13.5.3113
  9. He, Y., Lin, F., Chen, Y., Tan, Z., Bai, D., and Zhao, Q. (2015). Overexpression of the circadian clock gene Rev-erbalpha affects murine bone mesenchymal stem cell proliferation and osteogenesis. Stem Cells Dev. 24, 1194-1204. https://doi.org/10.1089/scd.2014.0437
  10. Iimura, T., Nakane, A., Sugiyama, M., Sato, H., Makino, Y., Watanabe, T., Takagi, Y., Numano, R., and Yamaguchi, A. (2012). A fluorescence spotlight on the clockwork development and metabolism of bone. J. Bone Miner. Metab. 30, 254-269. https://doi.org/10.1007/s00774-011-0295-3
  11. Kim, J., Jang, S., Choi, M., Chung, S., Choe, Y., Choe, H.K., Son, G.H., Rhee, K., and Kim, K. (2018). Abrogation of the circadian nuclear receptor REV-erbalpha exacerbates 6-hydroxydopamine-induced dopaminergic neurodegeneration. Mol. Cells 41, 742-752. https://doi.org/10.14348/molcells.2018.0201
  12. Kim, J.H. and Kim, N. (2016). Signaling pathways in osteoclast differentiation. Chonnam Med. J. 52, 12-17. https://doi.org/10.4068/cmj.2016.52.1.12
  13. King, D.P. and Takahashi, J.S. (2000). Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 23, 713-742. https://doi.org/10.1146/annurev.neuro.23.1.713
  14. Komori, T. (2011). Signaling networks in RUNX2-dependent bone development. J. Cell. Biochem. 112, 750-755. https://doi.org/10.1002/jcb.22994
  15. Lazar, M.A. (2016). Rev-erbs: integrating metabolism around the clock. In a Time for Metabolism and Hormones, P. Sassone-Corsi and Y. Christen, eds. (Cham, Switzerland: Springer), pp. 63-70.
  16. Lazar, M.A., Hodin, R.A., Darling, D.S., and Chin, W.W. (1989). A novel member of the thyroid/steroid hormone receptor family is encoded by the opposite strand of the rat C-erbA alpha transcriptional unit. Mol. Cell. Biol. 9, 1128-1136. https://doi.org/10.1128/MCB.9.3.1128
  17. Lee, S.Y., Kim, G.T., Yun, H.M., Kim, Y.C., Kwon, I.K., and Kim, E.C. (2018). Tectorigenin promotes osteoblast differentiation and in vivo bone healing, but suppresses osteoclast differentiation and in vivo bone resorption. Mol. Cells 41, 476-485. https://doi.org/10.14348/molcells.2018.0056
  18. Li, X., Liu, N., Gu, B., Hu, W., Li, Y., Guo, B., and Zhang, D. (2018). BMAL1 regulates balance of osteogenic-osteoclastic function of bone marrow mesenchymal stem cells in type 2 diabetes mellitus through the NF-kappaB pathway. Mol. Biol. Rep. 45, 1691-1704. https://doi.org/10.1007/s11033-018-4312-7
  19. Liu, A.C., Tran, H.G., Zhang, E.E., Priest, A.A., Welsh, D.K., and Kay, S.A. (2008). Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet. 4, e1000023. https://doi.org/10.1371/journal.pgen.1000023
  20. Matsumoto, M., Kogawa, M., Wada, S., Takayanagi, H., Tsujimoto, M., Katayama, S., Hisatake, K., and Nogi, Y. (2004). Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J. Biol. Chem. 279, 45969-45979. https://doi.org/10.1074/jbc.M408795200
  21. Maury, E., Hong, H.K., and Bass, J. (2014). Circadian disruption in the pathogenesis of metabolic syndrome. Diabetes Metab. 40, 338-346. https://doi.org/10.1016/j.diabet.2013.12.005
  22. McDearmon, E.L., Patel, K.N., Ko, C.H., Walisser, J.A., Schook, A.C., Chong, J.L., Wilsbacher, L.D., Song, E.J., Hong, H.K., Bradfield, C.A., et al. (2006). Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 314, 1304-1308. https://doi.org/10.1126/science.1132430
  23. McElderry, J.D., Zhao, G., Khmaladze, A., Wilson, C.G., Franceschi, R.T., and Morris, M.D. (2013). Tracking circadian rhythms of bone mineral deposition in murine calvarial organ cultures. J. Bone Miner. Res. 28, 1846-1854. https://doi.org/10.1002/jbmr.1924
  24. Ogawa, S., Lozach, J., Jepsen, K., Sawka-Verhelle, D., Perissi, V., Sasik, R., Rose, D.W., Johnson, R.S., Rosenfeld, M.G., and Glass, C.K. (2004). A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation. Proc. Natl. Acad. Sci. U. S. A. 101, 14461-14466. https://doi.org/10.1073/pnas.0405786101
  25. Ramakrishnan, S.N. and Muscat, G.E. (2006). The orphan Rev-erb nuclear receptors: a link between metabolism, circadian rhythm and inflammation? Nucl. Recept. Signal. 4, e009.
  26. Reppert, S.M. and Weaver, D.R. (2002). Coordination of circadian timing in mammals. Nature 418, 935-941. https://doi.org/10.1038/nature00965
  27. Rodriguez-Carballo, E., Gamez, B., and Ventura, F. (2016). p38 MAPK signaling in osteoblast differentiation. Front. Cell. Dev. Biol. 4, 40.
  28. Roodman, G.D. (2006). Regulation of osteoclast differentiation. Ann. N. Y. Acad. Sci. 1068, 100-109. https://doi.org/10.1196/annals.1346.013
  29. Samsa, W.E., Vasanji, A., Midura, R.J., and Kondratov, R.V. (2016). Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype. Bone 84, 194-203. https://doi.org/10.1016/j.bone.2016.01.006
  30. Schibler, U. and Sassone-Corsi, P. (2002). A web of circadian pacemakers. Cell 111, 919-922. https://doi.org/10.1016/S0092-8674(02)01225-4
  31. Schroeder, T.M., Kahler, R.A., Li, X., and Westendorf, J.J. (2004). Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J. Biol. Chem. 279, 41998-42007. https://doi.org/10.1074/jbc.M403702200
  32. Song, C., Tan, P., Zhang, Z., Wu, W., Dong, Y., Zhao, L., Liu, H., Guan, H., and Li, F. (2018). REV-erb agonism suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss partially via FABP4 upregulation. FASEB J. 32, 3215-3228. https://doi.org/10.1096/fj.201600825RRR
  33. Sowa, H., Kaji, H., Yamaguchi, T., Sugimoto, T., and Chihara, K. (2002). Activations of ERK1/2 and JNK by transforming growth factor beta negatively regulate Smad3-induced alkaline phosphatase activity and mineralization in mouse osteoblastic cells. J. Biol. Chem. 277, 36024-36031. https://doi.org/10.1074/jbc.M206030200
  34. Trump, R.P., Bresciani, S., Cooper, A.W., Tellam, J.P., Wojno, J., Blaikley, J., Orband-Miller, L.A., Kashatus, J.A., Boudjelal, M., Dawson, H.C., et al. (2013). Optimized chemical probes for REV-erbalpha. J. Med. Chem. 56, 4729-4737. https://doi.org/10.1021/jm400458q
  35. Wu, X., Yu, G., Parks, H., Hebert, T., Goh, B.C., Dietrich, M.A., Pelled, G., Izadpanah, R., Gazit, D., Bunnell, B.A., et al. (2008). Circadian mechanisms in murine and human bone marrow mesenchymal stem cells following dexamethasone exposure. Bone 42, 861-870. https://doi.org/10.1016/j.bone.2007.12.226
  36. Xiao, G., Jiang, D., Gopalakrishnan, R., and Franceschi, R.T. (2002). Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J. Biol. Chem. 277, 36181-36187. https://doi.org/10.1074/jbc.M206057200
  37. Xu, C., Ochi, H., Fukuda, T., Sato, S., Sunamura, S., Takarada, T., Hinoi, E., Okawa, A., and Takeda, S. (2016). Circadian clock regulates bone resorption in mice. J. Bone Miner. Res. 31, 1344-1355. https://doi.org/10.1002/jbmr.2803
  38. Yin, L. and Lazar, M.A. (2005). The orphan nuclear receptor Rev-erbalpha recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol. Endocrinol. 19, 1452-1459. https://doi.org/10.1210/me.2005-0057
  39. Zamir, I., Zhang, J., and Lazar, M.A. (1997). Stoichiometric and steric principles governing repression by nuclear hormone receptors. Genes Dev. 11, 835-846. https://doi.org/10.1101/gad.11.7.835
  40. Ziros, P.G., Gil, A.P., Georgakopoulos, T., Habeos, I., Kletsas, D., Basdra, E.K., and Papavassiliou, A.G. (2002). The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J. Biol. Chem. 277, 23934-23941. https://doi.org/10.1074/jbc.M109881200
  41. Zvonic, S., Ptitsyn, A.A., Kilroy, G., Wu, X., Conrad, S.A., Scott, L.K., Guilak, F., Pelled, G., Gazit, D., and Gimble, J.M. (2007). Circadian oscillation of gene expression in murine calvarial bone. J. Bone Miner. Res. 22, 357-365. https://doi.org/10.1359/jbmr.061114

피인용 문헌

  1. Differential responses of bone to angiotensin II and angiotensin(1-7): beneficial effects of ANG(1-7) on bone with exposure to high glucose vol.320, pp.1, 2020, https://doi.org/10.1152/ajpendo.00158.2020
  2. Inhibition of Lipopolysaccharide-Induced Inflammatory Bone Loss by Saikosaponin D is Associated with Regulation of the RANKL/RANK Pathway vol.15, 2020, https://doi.org/10.2147/dddt.s334421
  3. Morin attenuates osteoclast formation and function by suppressing the NF‐κB, MAPK and calcium signalling pathways vol.35, pp.10, 2020, https://doi.org/10.1002/ptr.7229
  4. REV-ERBs negatively regulate mineralization of the cementoblasts vol.587, 2020, https://doi.org/10.1016/j.bbrc.2021.11.051