Acknowledgement
This research described in this paper was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No.2018R1A2A2A05018524 and No. 2019R1A4A1021702).
References
- Abed, F., Alhamaydeh, M. and Abdalla, S. (2013), "Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)", J. Constr. Steel Res., 80, 429-439. https://doi.org/10.1016/j.jcsr.2012.10.005.
- AIJ. Recommendations for design and construction of concrete filled steel tubular structures, (1997). Architectural Institute of Japan, Tokyo.
- Altun, F., Kisi, O. and Aydin, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Comput. Mater. Sci., 42(2), 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011
- American concrete institute, (1962), ACI 318. Building code requirements for structural concrete and commentary (Vol. 552). USA.
- Aslani, F., Lloyd, R., Uy, B., Kang, W.H. and Hicks, S., (2016), "Statistical calibration of safety factors for flexural stiffness of composite columns", Steel Compos. Struct., 20(1), 127-145. https://doi.org/10.12989/scs.2016.20.1.127.
- Aslani, F., Uy, B., Tao, Z. and Mashiri, F., (2015), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct., 19(4), 967-993. https://doi.org/10.12989/scs.2015.19.4.967.
- Aslani, F., Uy, B., Wang, Z. and Patel, V., (2016), "Confinement models for high strength short square and rectangular concretefilled steel tubular columns", Steel Compos. Struct., 22(5), 937-974. https://doi.org/10.12989/scs.2016.22.5.937.
- Beck, A.T., de Oliveira, W.L.A., De Nardim, S. and ElDebs, A.L. H. C., (2009), "Reliability-based evaluation of design code provisions for circular concrete-filled steel columns", Eng. Struct., 31(10), 2299-2308. https://doi.org/10.1016/j.engstruct.2009.05.004.
- Cheng, M.Y. and Cao, M.T. (2014), "Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams", Eng. Appl. Artif. Intell., 28, 86-96. https://doi.org/10.1016/j.engappai.2013.11.001
- Dantas, A.T.A., Batista Leite, M. and De Jesus Nagahama, K. (2013), "Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks", Constr. Build. Mater., 38, 717-722. https://doi.org/10.1016/j.conbuildmat.2012.09.026.
- Das, S. and Choudhury, S. (2019), "Influence of effective stiffness on the performance of RC frame buildings designed using displacement-based method and evaluation of column effective stiffness using ANN", Eng. Struct., 197, 109354. https://doi.org/10.1016/j.engstruct.2019.109354.
- Duan, Z.H., Kou, S.C. and Poon, C.S. (2013), "Prediction of compressive strength of recycled aggregate concrete using artificial neural networks", Constr. Build. Mater., 40, 1200-1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063.
- Ekmekyapar, T. and Ghanim Hasan, H. (2019), "The influence of the inner steel tube on the compression behaviour of the concrete filled double skin steel tube (CFDST) columns", Mar. Struct., 66, 197-212. https://doi.org/10.1016/j.marstruc.2019.04.006.
- Eurocode 4: Design of composite steel and concrete structures. Part 1.1, General rules and rules for buildings. EN 1994-1-1:2004, (2004). Brussels.
- Furlong, R.W. (1967), "Strength of steel-encased concrete beam columns", J. Struct. Div.
- Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
- Goode, C.D. (2008), "Composite Columns-1819 Tests on Concrete-Filled Steel Tube Columns Compared with Eurocode 4", Inst. Struct. Eng., 86, 33-38.
- Gupta, P.K., Sarda, S.M. and Kumar, M.S. (2007), "Experimental and computational study of concrete filled steel tubular columns under axial loads", J. Constr. Steel Res., 63(2), 182-193. https://doi.org/10.1016/j.jcsr.2006.04.004
- Hasan, H.G., Ekmekyapar, T. and Shehab, B.A. (2019), "Mechanical performances of stiffened and reinforced concretefilled steel tubes under axial compression", Mar. Struct., 65, 417-432. https://doi.org/10.1016/j.marstruc.2018.12.008.
- Hayashi, F. (1990), Study on mechanical behavior of circular confined concrete column under axial compression. Kyushu University.
- Hwang, H.J., Baek, J.W., Kim, J.Y. and Kim, C.S. (2019), "Prediction of bond performance of tension lap splices using artificial neural networks", Eng. Struct., 198, 109535. https://doi.org/10.1016/j.engstruct.2019.109535.
- Ioffe, S. (2017), "Batch renormalization: Towards reducing minibatch dependence in batch-normalized models", Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
- Kang, J.Y., Choi, B.I. and Lee, H.J. (2006), "Application of artificial neural network for predicting plain strain fracture toughness using tensile test results", Fatigue Fract. Eng. Mater. Struct., 29(4), 321-329. https://doi.org/10.1111/j.1460-2695.2006.00994.x.
- Ketkar, N., (2017), Deep Learning with Python-A Hands-on Introduction. https://doi.org/10.1007/978-1-4842-2766-4.
- Larocca, C.B., Farias, C.T.T., Simas Filho, E.F. and Silva, I.C. (2018), "Wall thinning characterization of composite reinforced steel tube using frequency-domain PEC technique and neural networks", J. Nondestruct. Eval., 37(3), 1-8. https://doi.org/10.1007/s10921-018-0477-1.
- Lee, S. and Lee, C. (2014), "Prediction of shear strength of FRP-reinforced concrete flexural members without stirrups using artificial neural networks", Eng. Struct., 61, 99-112. https://doi.org/10.1016/j.engstruct.2014.01.001.
- Li, Y., Han, L., Xu, W. and Tao, Z. (2016), "Circular concreteencased concrete-filled steel tube (CFST) stub columns subjected to axial compression", Mag. Concr. Res., 68(19), 995-1010. https://doi.org/10.1680/jmacr.15.00359.
- Lin, C.Y. (1988), "Axial capacity of concrete infilled cold-formed steel columns", Proceedings of the 9th International Specialty Conference on Cold-Formed Steel Structures, 443-457. St. Louis, Missouri, U.S.A.
- Luat, N.V., Lee, K. and Thai, D.K. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
- Luat, N.V., Lee, J., Lee, D.H. and Lee, K. (2020), "GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading", Comput. Concret., 25(1), 1-14. https://doi.org/10.12989/cac.2020.25.1.001.
- Luksha, L.K. and Nesterovich, A.P. (1991), "Strength testing of large-diameter concrete filled steel tubular members", Proceedings of the Third International Conference on Steel-Concrete Composite Structures, ASCCS, Fukuoka, 67-70.
- Moon, J., Kim, J.J., Lee, T.H. and Lee, H.E. (2014), "Prediction of axial load capacity of stub circular concrete-filled steel tube using fuzzy logic", J. Constr. Steel Res., 101, 184-191. https://doi.org/10.1016/j.jcsr.2014.05.011
- Nikoo, M., Zarfam, P. and Sayahpour, H. (2013), "Determination of compressive strength of concrete using Self Organization Feature Map (SOFM)", Eng. Comput., 31(1), 113-121. https://doi.org/10.1007/s00366-013-0334-x.
- Oliveira, W.L.A. (2008), Theoretical-experimental analysis of circular concrete filled steel columns, Doctoral thesis. Sao Carlos School.
- O'Shea, M.D. and Bridge, R.Q. (2000), "Design of Circular Thin-Walled Concrete Filled Steel Tubes", J. Struct. Eng., 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)
- Knowles, R.B. and Park, R. (1970), "Axial load design for concrete filled steel tubes", J. Struct. Div., 96(10), 2125-2153. https://doi.org/10.1061/JSDEAG.0002720
- Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(asce)0733-9445(2004)130:2(180)
- Salani, H.J. and Sims, J.R. (1964), "Behavior of Mortar Filled Steel Tubes in Compression", J. Proceedings, 1271-1284.
- Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:10(1202).
- Shanmugam, N.E. and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Constr. Steel Res., 57(10), 1041-1080. https://doi.org/10.1016/S0143-974X(01)00021-9.
- Tang, C.W. (2017), "Fire resistance of high strength fiber reinforced concrete filled box columns", Steel Compos. Struct., 23(5), 611-621. https://doi.org/10.12989/scs.2017.23.5.611.
- Tao, Z., Han, L.H. and Wang, L.L. (2007), "Compressive and flexural behaviour of CFRP-repaired concrete-filled steel tubes after exposure to fire", J. Constr. Steel Res., 63(8), 1116-1126. https://doi.org/10.1016/j.jcsr.2006.09.007.
- Tomii, M. (1977), "Experimental studies on concrete filled steel tubular stud columns under concentric loading", Proceedings of the International Colloquium on Stability of Structures Under Static and Dynamic Loads, 718-741. Washington, DC.
- Uy, B. (2001), "Strength of short concrete filled high strength steel box columns", J. Constr. Steel Res., 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6.
- Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.W. (2002), "Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns", J. Constr. Steel Res., 58(5-8), 725-758. https://doi.org/10.1016/S0143-974X(01)00099-2.
- Wang, L., Cao, X.X., Ding, F.X., Luo, L., Sun, Y., Liu, X.M., and Su, H.L. (2018), "Composite action of concrete-filled double circular steel tubular stub columns", Steel Compos. Struct., 29(1), 77-90. https://doi.org/10.12989/scs.2018.29.1.077.
- Xiao, Y. (1989), Experimental Study and Analytical Modeling of Triaxial Compressive Behavior of Confined Concrete, Ph.D. Thesis, Kyushu University, Fukuoka, Japan.
- Yamamoto, T., Kawaguchi, J. and Morino, S., (2000), "Scale Effects on Compressive Behavior of Concrete-Filled Steel Tube Short Columns", Compos. Constr. Steel Concr. IV, 25, 27-44. https://doi.org/10.1061/40616(281)76.
- Yaseen, Z.M., Tran, M.T., Kim, S., Bakhshpoori, T. and Deo, R.C. (2018), "Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: A new approach", Eng. Struct., 177, 244-255. https://doi.org/10.1016/j.engstruct.2018.09.074
- Yoshioka, K., Inai, E., Hukumoto,N., Kai, M. and Murata, Y. (1995), "Compressive Tests on CFT Short Columns Part 1: Circular CFT Columns", Proceedings of the 2nd Jt. Tech. Coord. Comm. Compos. Hybrid Struct. Phase 5 Compos. Hybrid Struct.
- Yu, Q., Tao, Z. and Wu, Y.X. (2008), "Experimental behaviour of high performance concrete-filled steel tubular columns", Thin-Wall. Struct., 46(4), 362-370. https://doi.org/10.1016/j.tws.2007.10.001
- Zeghiche, J. and Chaoui, K. (2005), "An experimental behaviour of concrete-filled steel tubular columns", J. Constr. Steel Res., 61(1), 53-66. https://doi.org/10.1016/j.jcsr.2004.06.006.
Cited by
- A neuro-fuzzy approach to predict the shear contribution of end-anchored FRP U-jackets vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.397
- A Machine Learning-Based Model for Predicting Atmospheric Corrosion Rate of Carbon Steel vol.2021, 2020, https://doi.org/10.1155/2021/6967550
- Predicting the splitting tensile strength of concrete using an equilibrium optimization model vol.39, pp.1, 2020, https://doi.org/10.12989/scs.2021.39.1.081
- Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models - a new approach vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.461