References
- Alho, J. M. (1997). Scenario, uncertainty and conditional forecasts of the world population, Journal of Royal Statistical Society, 160, 71-85. https://doi.org/10.1111/1467-985X.00046
- Alho, J. M. (2005). Remarks on the use of probabilities in demography and forecasting. In N. Keilman (Ed), Perspectives on Mortality Forecasting (Vol 2. Probabilistic Models, 27-38), Swedish Social Insurance Agency, Stockholm.
- Alho, J. M. and Spencer, B. D. (1985). Uncertain population forecasting, Journal of the American Statistical Association, 80, 306-314. https://doi.org/10.1080/01621459.1985.10478113
- Alders, M. and De Beer, J. (2004). Assumptions on fertility in stochastic population forecasts, International Statistical Review, 72, 65-79. https://doi.org/10.1111/j.1751-5823.2004.tb00224.x
- Alkema, L., Gerpand, P., Raftery, A., and Wilmoth, J. (2015). The United Nations Probabilistic Population Projections: an introduction to demographic forecasting with uncertainty, Foresight (Colch), 37, 19-24.
- Billari, F. C., Graziani, R., and Melilli, E. (2012). Stochastic population forecasts based on conditional expert opinions, Journal of the Royal Statistical Society, 175, 491-511. https://doi.org/10.1111/j.1467-985X.2011.01015.x
- Booth, H. (2006). Demographic forecasting: 1980 to 2005 in review, International Journal of Forecasting, 22, 547-581. https://doi.org/10.1016/j.ijforecast.2006.04.001
- Booth, H. and Tickle, L. (2008). Mortality modelling and forecasting: a review of methods, Annals of Actuarial Science, 3, 3-43. https://doi.org/10.1017/S1748499500000440
- Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations, Journal of the Royal Statistical Society, Series B, 26, 211-252.
- De Beer, J. (2000). Dealing with uncertainty in population forecasting, Statistics Netherlands. Available from: www.cbs.nl/nr/rdonlyres/7dc466f9-fe4c-48dc-be90-30216b697548/0/dealingwithuncertainty.pdf
- Dunstan, D. and Ball, C. (2016). Demographic projections: user and producer experiences of adoption a stochastic approach, Journal of Official Statistics, 32, 947-962. https://doi.org/10.1515/jos-2016-0050
- Gerland, P., Raftery, A. E., Sevcikova, H., et al. (2014). World population stabilization unlikely this century, Science, 346, 234-237. https://doi.org/10.1126/science.1257469
- Hoem, J. M., Madsen, D., Nielsen, J. L., Ohlsen, E. M., Hansen, H. O., and Rennermalm, B. (1981). Experiments in modelling recent Danish fertility curves, Demography, 18, 231-244. https://doi.org/10.2307/2061095
- Horiuchi, S. and Wilmoth, J. R. (1995). Aging of Mortality Decline, Rockefeller University, New York.
- Hyndman, R. J. and Booth, H. (2008). Stochastic population forecasts using functional data models for mortality, fertility and migration, International Journal of Forecasting, 24, 323-342. https://doi.org/10.1016/j.ijforecast.2008.02.009
- Hyndman, R. J., Booth, H., and Yasmeen, F. (2013). Coherent mortality forecasting: the product-ration method with functional time series models, Demography, 50, 261-283. https://doi.org/10.1007/s13524-012-0145-5
- Hyndman, R. J. and Ullah, M. S. (2007). Robust forecasting of mortality and fertility rates: a functional data approach, Computational Statistics & Data Analysis, 51, 4942-4956. https://doi.org/10.1016/j.csda.2006.07.028
- Kaneko, R. (2003). Elaboration of the Coale-McNeil nuptiality model as the generalized log gamma distribution: a new identity and empirical enhancements, Demographic Research, 9, 223-262. https://doi.org/10.4054/DemRes.2003.9.10
- Keilman, N. (2005). Erroneous population forecasts. In Perspectives on Mortality Forecasting: Vol II Probabilistic Models, N. Keilman (Ed), Swedish National Social Insurance Board, Stockholm.
- Keilman, N., Pham, D. Q., and Hetland, A. (2002). Why population forecasts should be probabilistic - illustrated by the case of Norway, Demographic Research, 6, 409-454. https://doi.org/10.4054/DemRes.2002.6.15
- Keyfitz, N. (1981). The limits of population forecasting, Population and Development Review, 7, 579-593. https://doi.org/10.2307/1972799
- Kim, S. Y. and Oh, J. H. (2017). A study comparison of mortality projection using parametric and nonparametric model, The Korean Journal of Applied Statistics, 30, 701-717. https://doi.org/10.5351/KJAS.2017.30.5.701
- KOSTAT (2016). Population projection 2015-2065.
- KOSTAT (2019). The Special population projection 2017-2067.
- Lee, R. D. (1998). Probabilistic approaches to population forecasting, Population and Development Review, 24, 156-190. https://doi.org/10.2307/2808055
- Lee, R. D. (2004). Quantifying our ignorance: stochastic forecasts of population and public budgets, Population and Development Review, 30, 153-175.
- Lee, R. D. and Carter, L. R. (1992). Modeling and forecasting U.S. mortality, Journal of the American Statistical Association, 87, 659-671. https://doi.org/10.2307/2290201
- Lee, R. D. and Tuljapurkar, S. (1994). Stochastic population forecasts for the United States: beyond high, medium, and low, Journal of the American Statistical Association, 89, 1175-1189. https://doi.org/10.1080/01621459.1994.10476857
- Leslie, P. H. (1945). The use of matrices in certain population mathematics, Biometrika, 33, 183-212. https://doi.org/10.1093/biomet/33.3.183
- Leslie, P. H. (1948). Some further notes on the use of matrices in population mathematics, Biometrika, 35, 213-245. https://doi.org/10.1093/biomet/35.3-4.213
- Li, N. and Gerland, P. (2011). Modifying the Lee-Carter Method to Project Mortality Changes up to 2100, the Population Association of America 2011 Annual meeting-Washington, DC, Session 125, formal Demography I: Mathematical Models and Methods.
- Li, N. and Lee, R. (2005). Coherent mortality forecasts for a group of populations: an extension of the Lee-Carter method, Demography, 42, 575-594. https://doi.org/10.1353/dem.2005.0021
- Li, N., Lee, R., and Gerland, P. (2013). Extending the Lee-Cater method to model the rotation of age patterns of mortality decline for long-term projections, Demography, 50, 2037-2051. https://doi.org/10.1007/s13524-013-0232-2
- Li, Q., Reuser, M., Kraus, C., and Alho, J. (2007). Aging of a giant: a stochastic population forecast for China, 2001-2050, MPIDR Working Papers WP-2007-032, Max Planck Institute for Demographic Research, Rostock, Germany.
- Lutz, W. (2009). Toward a Systematic, Argument-Based Approach to Defining Assumptions for Population Projections (Interim Report IR-09-037), International Institute for Applied Systems Analysis, Austria. Available from: http://pure.iiasa.ac.at/9115/1/IR-09-037.pdf (accessed 19 May 2016).
- Lutz, W., Butz, W. P., and KC, S. (2014). World Population & Human Capital in the Twenty-first Century: Executive Summary, IIASA, Laxenburg, Austria.
- Lutz, W. and Goldstein, J. R. (2004). Introduction: How to deal with uncertainty in population forecasting?, International Statistical Review, 72, 1-4. https://doi.org/10.1111/j.1751-5823.2004.tb00219.x
- MPIDR (2006). Stochastic forecast of the population of Poland, 2005-2050. MPIDR working paper WP-2006-26.
- MPIDR (2007). Aging of a giant: a stochastic population forecast for Poland, 2005-2050. MPIDR working paper WP-2007-32.
- Oh, J. H. (2018). A comparison between the real and synthetic cohort of mortality for Korea, The Korean Journal of Applied Statistics, 31, 427-446. https://doi.org/10.5351/KJAS.2018.31.4.427
- ONS (2009). progress report on developing stochastic population forecasts for the United Kingdom.
- Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis (2nd ed), Springer-Verlag, New York.
- Raftery, A. E., Li, N., Sevcikova, H., Gerland, P., and Heilig, G. K. (2012). Bayesian probabilistic population projections for all countries, Proceedings of the National Academy of Sciences, 109, 13915-13921. https://doi.org/10.1073/pnas.1211452109
- Raftery, A. E., Chunn, J. L., Gerland, P., and Sevcikova, H. (2013). Bayesian probabilistic projections of life expectancy for all countries, Demography, 50, 777-801. https://doi.org/10.1007/s13524-012-0193-x
- SCB (2006). Stochastic Population Projections for Sweden, Research and Development, Methodology reports from Statistics Sweden.
- Smith, D. P. and Keyfitz, N. (1977). Mathematical Demography: Selected Papers, Springer Verlag, Berlin.
- Smith, S. K., Tayman, J., and Swanson, D. A. (2001). State and Local Population Projections: Methodology and Analysis, Kluwer Academic/Plenum Publishers, New York.
- Stoto, M. (1983). The accuracy of population projections, Journal of the American Statistical Association, 78, 13-20. https://doi.org/10.1080/01621459.1983.10477916
- Statistics Canada (2015). Population Projections for Canada (2013 to 2063), Provinces and Territories (2013 to 2038): Technical Report on Methodology and Assumptions.
- Statistics NZ (2016). National Population Projections: 2016(base)-2068. Available from: http://www.stats.govt.nz/browse for stats/population/estimates and projections/NationalPopulationProjections HOTP2016.aspx (accessed 25 October 2016)
- UN (2017). World Population Prospects 2017.
- UN (2019). World Population Prospects 2019.
- UNICEF (2017). Level & Trends in Child Mortality.
- VID (2016). 40 years of the Vienna Institute of Demography 1975-2015.
- Woo, H. B. (2010). Stochastic demographic and population forecasting, Korea Journal of Population Studies, 33, 161-189.