DOI QR코드

DOI QR Code

발달 독성학에서 비대칭 로짓 모형을 사용한 이진수 자료와 연속형 자료에 대한 결합분석

Joint analysis of binary and continuous data using skewed logit model in developmental toxicity studies

  • 김영화 (중앙대학교 응용통계학과) ;
  • 황범석 (중앙대학교 응용통계학과)
  • 투고 : 2019.09.17
  • 심사 : 2019.11.05
  • 발행 : 2020.04.30

초록

하나의 개체에서 여러가지 측정치가 동시에 관찰되는 경우는 다양한 연구 분야에서 흔히 나타난다. 발달 독성학 연구에서는 특정 독성 물질의 각기 다른 수준에 노출된 임신한 어미 쥐에 대해 기형인 태아의 존재와 태아의 무게가 동시에 측정된다. 이런 두 변수를 결합하여 모형화하는 것은 각기 독립적인 두 모형으로 분석하는 것보다 더 효율적인 결과를 낸다고 알려져 있다. 대부분의 결합 모형은 정규분포를 랜덤효과로 가정하여 분석한다. 그러나 발달 독성학 연구에서처럼 반응변수들의 분포가 독성 물질이 변함에 따라 불규칙하게 변하는 경우 정규분포의 가정으로는 그 특징을 잡아낼 수 없게 된다. 본 논문에서는 이진수 자료와 연속형 자료에 대해 비대칭 로짓 모형을 사용한 베이지안 결합모형을 제시한다. 본 모형은 비대칭 로짓 모형을 사용함으로써 반응변수의 분포의 형태가 독성 물질의 수준에 따라 대칭/비대칭의 형태를 자유롭게 띨 수 있는 장점을 가지고 있다. 모형의 적합성을 살펴보기 위해 발달 독성학 연구에서 독성 물질 DEHP에 적용하여 그 결과를 확인해본다.

It is common to encounter correlated multiple outcomes measured on the same subject in various research fields. In developmental toxicity studies, presence of malformed pups and fetal weight are measured on the pregnant dams exposed to different levels of a toxic substance. Joint analysis of such two outcomes can result in more efficient inferences than separate models for each outcome. Most methods for joint modeling assume a normal distribution as random effects. However, in developmental toxicity studies, the response distributions may change irregularly in location and shape as the level of toxic substance changes, which may not be captured by a normal random effects model. Motivated by applications in developmental toxicity studies, we propose a Bayesian joint model for binary and continuous outcomes. In our model, we incorporate a skewed logit model for the binary outcome to allow the response distributions to have flexibly in both symmetric and asymmetric shapes on the toxic levels. We apply our proposed method to data from a developmental toxicity study of diethylhexyl phthalate.

키워드

참고문헌

  1. Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data, Journal of the American Statistical Association, 88, 669-679. https://doi.org/10.1080/01621459.1993.10476321
  2. Casella, G. and George, E. I. (1992). Explaining the Gibbs sampler, The American Statistician, 46, 167-174. https://doi.org/10.2307/2685208
  3. Catalano, P. J. and Ryan, L. M. (1992). Bivariate latent variable models for clustered discrete and continuous outcomes. Journal of the American Statistical Association, 87, 651-658. https://doi.org/10.1080/01621459.1992.10475264
  4. Celeux, G., Forbes, F., Robert, C. P., and Titterington, D. M. (2006). Deviance information criterion for missing data models, Bayesian Analysis, 1, 651-674. https://doi.org/10.1214/06-BA122
  5. Chen, M. H., Dey, D. K., and Shao, Q. M. (1999). A new skewed link model for dichotomous quantal response data, Journal of the American Statistical Association, 94, 1172-1186. https://doi.org/10.1080/01621459.1999.10473872
  6. Chen, M. H., Dey, D. K., and Shao, Q. M. (2001). Bayesian analysis of binary data using skewed logit models, Calcutta Statistical Association Bulletin, 51, 12-30.
  7. Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm, The American Statistician, 49, 327-335. https://doi.org/10.2307/2684568
  8. De Iorio, M., Muller, P., Rosner, G. L., and MacEachern, S. N. (2004). An ANOVA model for dependent random measures, Journal of the American Statistical Association, 99, 205-215. https://doi.org/10.1198/016214504000000205
  9. Dunson, D. B. (2000). Bayesian latent variable models for clustered mixed outcomes, Journal of the Royal Statistical Society: Series B, 62, 355-366. https://doi.org/10.1111/1467-9868.00236
  10. Dunson, D. B., Chen, Z., and Harry, J. (2003). A Bayesian approach for joint modeling of cluster size and subunit-specific outcomes, Biometrics, 59, 521-530. https://doi.org/10.1111/1541-0420.00062
  11. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014). Bayesian Data Analysis, CRC Press, New York.
  12. Haario, H., Saksman, E., and Tamminen, J. (2005). Componentwise adaptation for high dimensional MCMC, Computational Statistics, 20, 265-273. https://doi.org/10.1007/BF02789703
  13. Hwang, B. S. and Pennell, M. L. (2014). Semiparametric Bayesian joint modeling of a binary and continuous outcome with applications in toxicological risk assessment, Statistics in Medicine, 33, 1162-1175. https://doi.org/10.1002/sim.6007
  14. Hwang, B. S. and Pennell, M. L. (2018). Semiparametric Bayesian joint modeling of clustered binary and continuous outcomes with informative cluster size in developmental toxicity assessment, Environmetrics, 29, e2526, 1-15.
  15. Kim, S. B. and Hwang, B. S. (2019). A Bayesian skewed logit model for high-risk drinking data, Journal of the Korean Data & Information Science Society, 30, 335-348. https://doi.org/10.7465/jkdi.2019.30.2.335
  16. Li, E., Zhang, D., and Davidian, M. (2004). Conditional estimation for generalized linear models when covariates are subject-specific parameters in a mixed model for longitudinal measurements, Biometrics, 60, 1-7. https://doi.org/10.1111/j.0006-341X.2004.00170.x
  17. MacEachern, S. N. (1999). Dependent nonparametric process. In ASA Proceeding of the Section on Bayesian Statistical Science, American Statistical Association: Alexandria, VA.
  18. McCulloch, C. (2008). Joint modelling of mixed outcome types using latent variables, Statistical Methods in Medical Research, 17, 53-73. https://doi.org/10.1177/0962280207081240
  19. Regan, M. M. and Catalano, P. J. (1999). Likelihood models for clustered binary and continuous outcomes: application to developmental toxicology, Biometrics, 55, 760-768. https://doi.org/10.1111/j.0006-341X.1999.00760.x
  20. Sethuraman, J. (1994). A constructive definition of Dirichlet priors, Statistica Sinica, 4, 639-650.
  21. Spiegelhalter, D. J., Best, N. G., Carline, B. P., and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society: Series B, 64, 583-639. https://doi.org/10.1111/1467-9868.00353