DOI QR코드

DOI QR Code

고심도 암반의 스폴링 평가에 대한 사례 분석 및 광주 스폴링 모델링

A Case Analysis on the Spalling Evaluation of the Deep Rock Mass and Pillar Spalling Modeling

  • 박승훈 (인하대학교 에너지자원공학과) ;
  • 권상기 (인하대학교 에너지자원공학과) ;
  • 이창수 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 이재원 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 윤석 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 김건영 (한국원자력연구원 방사성폐기물처분연구부)
  • Park, Seunghun (Dept. of Energy Resource Engineering, Inha University) ;
  • Kwon, Sangki (Dept. of Energy Resource Engineering, Inha University) ;
  • Lee, Changsoo (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute) ;
  • Lee, Jaewon (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute) ;
  • Yoon, Seok (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Geon-Young (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute)
  • 투고 : 2019.12.13
  • 심사 : 2020.01.08
  • 발행 : 2020.04.30

초록

전 세계적으로 지하의 고심도화는 다양한 시설 개발의 목적으로 관심도가 높은 상황이다. 고심도 지하공간의 개발은 암반의 구조적 안정성이 바탕이 되어야 한다. 고심도 지하공간에서는 스폴링이 구조적 안정성에 영향을 미치는 것으로 알려져 있다. 스폴링을 예측하기 위해서 많은 연구자들은 터널 주변에서 발생하는 응력상태, 암반상태 및 암종에 따라 제안하였다. 또한, 현지에서 측정된 결과와 FLAC, EXAMINE, UDEC, Insight 2D, FRACOD 등의 컴퓨터 모델링을 이용하여 스폴링 해석 방법에 대한 검증이 수행되었다. 캐나다 URL(Underground Research Tunnel)에서는 스폴링 현상에 대한 정확한 예측을 위해 CWFS(Cohesion Weakening Frictional Strengthening)모델을 제안하고 이를 비교 분석하였다. CWFS 모델은 스폴링 현상을 예측하는데 신뢰도 높은 방법으로 확인되었다. 본 연구에서는 고심도 암반에서의 스폴링 발생에 대한 사례들을 분석하고 스폴링 발생조건과 CWFS 모델의 예측 결과를 비교하였다. 이를 통해 고심도 조건에서의 광주를 대상으로 스폴링 예측에 대한 적용성을 검토하고자 하였다.

Globally, the deepening depth in the underground is a situation of the high interest for a purpose of the development of various facilities. The development of deep underground space should be based on the structural stability of rocks. Spalling is known to have an impact on the structural stability degradation in deep underground space. As an attempt to predict spalling, many researchers have proposed predicted conditions in accordance with stress states which occur around the tunnel, rock conditions, and types of rock. In addition, the analysis on spalling method has been verified by using computer modeling such as FLAC, EXAMINE, Insight 2D, UDEC and FRACOD, along with in-situ measurement results. In Canada URL (Underground Research Tunnel), CWFS model (Cohesion Weakening Frictional Strengthening) was used to precisely predict for the state of spalling, comparing spalling modeling. CWFS model has been identified as a reliable method for predicting such phenomena. This study aims to analyze several cases of spalling, and then make a comparison between the conditions for spalling occurrence and the predicted results of model CWFS. With this, it investigates the applicability of prediction of spalling, targeting pillar under deep depth condition.

키워드

참고문헌

  1. Andersson, C.J., 2007, Aspo Hard Rock Laboratory, Aspo Pillar Stability Experiment, Final Report, Rock Mass Response to Coupled Mechanical Thermal Loading, SKB TR 07-01.
  2. Atsushi, S. and Hani S.M., 2017, Numerical investigation into pillar failure induced by time-dependent skin degradation, International Journal of Mining Science and Technology, Vol. 27, pp. 591-597. https://doi.org/10.1016/j.ijmst.2017.05.002
  3. Barton, N. and Shen, B., 2017, Risk of shear failure and extensional failure around over-stressed excavations in brittle rock, Journal of Rock Mechanics and Geotechnical Engineering, Vol. 9, pp. 210-225. https://doi.org/10.1016/j.jrmge.2016.11.004
  4. Brace, W.F., Paulding, B.W. and Scholz, C., 1966, Dilatancy in the fracture of crystalline rocks, J. Geophys. Res, Vol. 71, 53p.
  5. Bieniawski, Z.T., 1967, Mechanisms of brittle fracture of rock: Part I: Theory of the fracture process; Part II: experimental studies; Part III: fracture under tension and under long term loading, Int. J. Rock. Mech. Min. Sci., pp. 395-430.
  6. Cai, M. and Kaiser, P.K.,2014, In-situ Rock Spalling Strength near Excavation Boundaries, Rock Mech. Rock Eng., Vol. 47, pp. 659-675. https://doi.org/10.1007/s00603-013-0437-0
  7. Cai, M., Kaiser, P.K., Tasaka, Y., Maejima, T., Morika, H. and Minami, M., 2004, Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations, Int. J. Rock. Mech. Min. Sci., Vol. 44, pp. 33-847.
  8. Carter, B.J., Scott Duncan, E.J. and Lajtai, E.Z., 1991, Fitting strength criteria to intact rock, Geotechnical & Geological Engineering, Vol. 9, pp. 73-81. https://doi.org/10.1007/BF00880985
  9. Castro, L., 1996, Analysis of stress-induced damage initiation around deep openings excavated in a moderately jointed brittle rockmass, Ph.D. Thesis, University of Toronto.
  10. Cheon, D.S., Jung, Y.B., Park, C. and Jeon, S.W., 2007, Damage-controlled test to determine the input parameters for CWFS model and its application to simulation of brittle failure, Tunnel and Underground Space, Vol. 9, pp. 263-273.
  11. Eberhardt, E., 1998, Brittle rock fracture, progressive damage in uniaxial compression, Ph.D. Thesis, University of Saskatchewan.
  12. Eberhardt, E., Stead, D. and Stimpson, B., 1999, Quantifying progressive prepeak brittle fracture damage in rock during uniaxial compression, Int. J. Rock. Mech. Min. Sci. Vol. 36, pp. 361-380. https://doi.org/10.1016/S0148-9062(99)00019-4
  13. Edelbro, C., 2008, Strength, fallouts and numerical modelling of hard rock masses, Ph. D. Thesis, Lulea University of Technology.
  14. Fonseka, G.M, Murrell, S.A.F. and Barnes, P., 1985, Scanning electron microscope and acoustic emission studies of crack development in rocks, Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr. Vol. 22, pp. 273-289. https://doi.org/10.1016/0148-9062(85)92060-1
  15. Haied, A., Kondo, D. and Henry, J.P., 2000, Strain localization in Fontainebleau sandstone, Mech Cohes-Fric. Mater., Vol. 5, pp. 239-253. https://doi.org/10.1002/(SICI)1099-1484(200004)5:3<239::AID-CFM97>3.0.CO;2-J
  16. Hajiabdolmajid, V., Kaiser, P. K. and Martin, C. D., 2002, Modelling brittle failure of rock, Int. J. Rock. Mech. Min. Sci., Vol. 39, pp. 731-741. https://doi.org/10.1016/S1365-1609(02)00051-5
  17. Hatzor, Y.H. and Palchik, V., 1997, The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites, Int. J. Rock. Mech. Min. Sci., Vol. 34. pp. 805-816. https://doi.org/10.1016/S1365-1609(96)00066-6
  18. Hedley, D. G. F. and Grant, F., 1972, Stope-and-pillar design for the Elliot Lake Uranium Mines, CIM Bull., Vol. 65, pp. 37-44.
  19. Hoek, E. and Brown, E.T., 1980, Underground excavations in rock, The Institution of Mining and Metallurgy, 527p.
  20. Illston, J.M., Dinwoodie, J.M. and Smith. A.A., 1979, Concrete, timber and metals, New York: Van Nostrand Reinhold, 663p.
  21. Katz, O. and Reches, Z., 2004, Microfracturing, damage and failure of brittle granites, J. Geophys. Res., Vol. 109.
  22. Krauland, N. and Soder, P.E., 1987, Determining pillar strength from pillar failure observation, Engineering and Mining Journal, Vol. 8, pp. 34-40.
  23. Kim, J.A., 2005, A numerical study on the brittle failure of rock and rock mass, Master Thesis, Suwon University.
  24. Lan, H., Martin, C.D. and Andersson, J.C., 2013, Evolution of in situ rock mass damage induced by mechanical-thermal loading, Rock Mech. Rock Eng., Vol. 46, pp. 153-168. https://doi.org/10.1007/s00603-012-0248-8
  25. Lei, X., Kusunose, K., Nishizawa, O., Cho, A. and Satoh, T., 2000, On the spatiotemporal distribution of acoustic emissions in two granitic rocks under triaxial compression: the role of pre-existing cracks, Geophys. Res. Lett., Vol. 27, pp. 1997-2000. https://doi.org/10.1029/1999GL011190
  26. Lunder, P. J., 1994, Hard rock pillar strength estimation an applied empirical approach, Master Thesis, University of British Columbia.
  27. Martin, C.D., 1993, The Strength of Massive Lac du Bonnet Granite Around Underground Openings, Ph. D. Thesis, University of Manitoba.
  28. Martin, C.D., 1999, Presentation slide of Brittle rock failure and tunnelling in high stressed rock, Tunnel construction brittle rock, Edmonton, Canada.
  29. Martin, C.D. and Christianssonm R, 2009, Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock, Int. J. Rock. Mech. Min. Sci., Vol. 46. pp. 219-228. https://doi.org/10.1016/j.ijrmms.2008.03.001
  30. Martin, C.D., Kaiser, P.K. and McCreath. D.R., 1999, Hoek-Brown parameters for predicting the depth of brittle failure around tunnels, Canadian Geotechnical Journal, Vol. 36, pp. 136-151. https://doi.org/10.1139/t98-072
  31. Martin, C.D., Kaiser, P.K. and Christiansson, R., 2003, Stress instability and design of underground excavations, Int. J. Rock Mech. Min. Sci., Vol. 40, pp. 1027-1047. https://doi.org/10.1016/S1365-1609(03)00110-2
  32. Martin, D., 2005, Preliminary assessment of potential underground stability(wedge and spalling) at Forsmark, Simpevarp and Laxemar sites, SKB R-05-71.
  33. Martino, J.B. and Chandler, N. A., 2004, Excavation-induced damage studies at the underground research laboratory, Int. J. Rock Mech. Min. Sci., Vol. 41, pp. 1413-1426. https://doi.org/10.1016/j.ijrmms.2004.09.010
  34. Ortlepp, W.D., 1997, Rock Fracture and Rockbursts - An Illustrative Study, Monograph Series M9. Johanennesburg: The South African Institute of Mining and Metallurgy.
  35. Park, H.S., 2010, Analysis of pillar stability for ground vibration and flyrock impact in underground mining blasting, Ph. D. Thesis, Chosun University.
  36. Pestman, B.J. and Van Munster, J.G., 1996, An acoustic emission study of damage development and stress-memory effects in sandstone, Int. J. Rock. Mech. Min. Sci., Vol. 33, pp. 585-593. https://doi.org/10.1016/0148-9062(96)00011-3
  37. Pettitt, W.S., Young, R.P. and Marsden, J.R., 1998, Investigating the mechanics of microcrack damage induced under true-triaxial unloading, In: Eurock '98, Society of Petroleum Engineers.
  38. Pritchard, C.J. and Hedley, D.G.F., 1993, Progressive pillar failure and rock bursting at Denison Mine. In: Proceedings of the 3rd International Symposium on Rock bursts and Seismicity in Mines, Kingston, pp. 111-116.
  39. Rafiei Renani, H. and Martin, C.D., 2018, Modeling the progressive failure of hard rock pillars, Tunnelling and Underground Space Technology, Vol. 74, pp. 71-81. https://doi.org/10.1016/j.tust.2018.01.006
  40. Sjoberg, J., Bolin, A., Sanchez Juncal, A., Wettainen, T., Mas Ivars, D. and Perman, F., 2015, Input to orepass design - a numerical study, Underground Design Methods 2015 - Y. Potvin (ed.), pp. 571-584.
  41. Singh, D.P., 1970, A study of time-dependent properties, other physical properties of rocks, Ph. D. Thesis. University of Melbourne, 219p.
  42. Synn, J.H., Park, C. and Lee, B.J., 2013, Regional distribution pattern and geo-historical transition of In-situ stress fields in the Korean peninsula, Tunnel and Underground Space, Vol. 13, No. 6, pp. 457-469. https://doi.org/10.7474/TUS.2013.23.6.457
  43. Tjader, E., 2018, Shafts and rock mass strength, Master Thesis, Lulea University of Technology.
  44. Von Kimmelman, M. R., Hyde, B. and Madgwick, R. J., 1984, The use of computer applications at BCL limited in planning pillar extractino and the design of mining layouts, Int. Soc. Rock Mech. Symp., pp. 53-63.
  45. Wagner, H., 1974, Determination of the complete load-deformation characteristics of coal pillars. In: Proceedings of 3rd ISRM Conference, Denver. Colorado, pp. 1076-1081.
  46. Walton, G., 2014, Inproving continuum models for excavation in rock messes under high stress through an enhanced understanding of post-yield dilatancy, Ph. D. Thesis, Queen's University, Kingston, Canada.