DOI QR코드

DOI QR Code

개별요소법을 이용한 삼차원 DFN 시스템의 강도 및 변형계수 추정

Estimation of Strength and Deformation Modulus of the 3-D DFN System Using the Distinct Element Method

  • 류성진 (부경대학교 에너지자원공학과) ;
  • 엄정기 (부경대학교 에너지자원공학과) ;
  • 박진용 (한국원자력안전기술원 처분규제실)
  • Ryu, Seongjin (Dept. of Energy Resources Engineering, Pukyong National University) ;
  • Um, Jeong-Gi (Dept. of Energy Resources Engineering, Pukyong National University) ;
  • Park, Jinyong (Dept. of Radioactive Waste Disposal Regulation, Korea Institute of Nuclear Safety)
  • 투고 : 2020.01.06
  • 심사 : 2020.01.10
  • 발행 : 2020.02.29

초록

본 연구는 개별요소법을 이용하여 삼차원 불연속절리망 시스템의 강도 및 변형계수를 추정하기 위해 제안된 기법을 소개하였다. DFN(discrete fracture network) 시스템에서 개별 절리는 유한 길이의 정사각 평면으로 취급하였다. 해석영역은 무결암과 유사한 거동을 하도록 설정된 가상절리와 실제 개별 절리의 조합으로 형성된 다면체로 이산화하였다. 제안된 기법의 적용성을 검토하기 위하여 확정적 및 추계론적 삼차원 DFN 시스템으로 이루어진 한 변이 10m인 정육면체 해석영역에 대하여 개별요소법에 의한 강도 및 변형계수를 추정하는 수치실험이 수행되었다. 또한, 본 연구는 절리의 기하학적 속성이 DFN 시스템의 강도 및 변형 특성에 미치는 영향을 살펴보았다. 제안된 기법은 삼차원 DFN 시스템의 이방적 강도 및 변형 특성을 효과적으로 추정하는 것으로 평가되었다.

In this study, a procedure was introduced to estimate strength and deformation modulus of the 3-D discrete fracture network(DFN) systems using the distinct element method(DEM). Fracture entities were treated as non-persistent square planes in the DFN systems. Systematically generated fictitious fractures having similar mechanical characteristics of intact rock were combined with non-persistent real fractures to create polyhedral blocks in the analysis domain. Strength and deformation modulus for 10 m cube domain of various deterministic and stochastic 3-D DFN systems were estimated using the DEM to explore the applicability of suggested method and to examine the effect of fracture geometry on strength and deformability of DFN systems. The suggested procedures were found to effective in estimating anisotropic strength and deformability of the 3-D DFN systems.

키워드

참고문헌

  1. Amadei B. and Goodman R.E., 1981, A 3D constitutive relation for fractured rock masses, In Proc. Int. Symp. on Mechanical Behavior of Structured Media, Ottawa, Canada, Part B, 249-268.
  2. Bieniawski, Z. T., 1968, The effect of specimen size on compressive strength of coal, Int. J. Rock Mech. and Min. Sci., 5, 321-335. https://doi.org/10.1016/0148-9062(68)90004-1
  3. Bieniawski Z.T., 1978, Determining rock mass deformability: experience from case histories, Int. J. Rock Mech. Min. Sci., 15, 237-247. https://doi.org/10.1016/0148-9062(78)90956-7
  4. Bieniawski, Z.T. and Van Heerden, W.L., 1975, The significance of in-situ tests on large rock specimens, Int. J. Rock Mech. and Min. Sci., 12, 101-113. https://doi.org/10.1016/0148-9062(75)90004-2
  5. Brown E.T., 1970, Strength of models of rock with intermittent joints, J. Soil Mech. Found. Div., ASCE, 96, 1935-1949. https://doi.org/10.1061/JSFEAQ.0001479
  6. Chalhoub M. and Pouya A. 2008, Numerical homogenization of a fractured rock mass: a geometrical approach to determine the mechanical representative elementary volume, Electron. J. Geotech Eng., 13, 1-12.
  7. Cundall P.A., 1971, A computer model for simulating progressive large-scale movements in blocky rock system, Proc. Symp. Int. Soc. Rock Mechanics, Nancy, France, 2, 2-8.
  8. Cundall P.A., 1988, Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks, Int. J. Rock Mech. Min. Sci., 25, 107-116. https://doi.org/10.1016/0148-9062(88)92293-0
  9. Einstein H.H. and Hirschfeld R.C., 1973, Model studies on mechanics of jointed rock, J. Soil Mech. Found. Div., ASCE, 99, 229-242. https://doi.org/10.1061/JSFEAQ.0001859
  10. Fossum A.F., 1985, Effective elastic properties for a randomly jointed rock mass, Int. J. Rock Mech. Min. Sci. and Geomech. Abst., 22, 467-470. https://doi.org/10.1016/0148-9062(85)90011-7
  11. Gerrard C.M., 1982, Equivalent elastic moduli of a rock mass consisting of orthorhombic layers, Int. J. Rock Mech. Min. Sci. and Geomech. Abst., 19, 9-14. https://doi.org/10.1016/0148-9062(82)90705-7
  12. Grimstad E. and Barton N., 1993, Updating the Q-system for NMT, Proc. Int. Symp. on sprayed concrete - modern use of wet mix sprayed concrete for underground support, Fagernes, 46-66.
  13. Hart R., Cundall P.A. and Lemos J., 1988, Formulation of a three-dimensional distinct element model-Part II: Mechanical calculation for motion and interaction of a system composed of many polyhedral blocks, Int. J. Rock Mech. Min. Sci., 25, 117-126.
  14. Itasca, 2016, 3DEC(v.5.2) User's Guide, Itasca Consulting Group, Inc.
  15. Kulatilake P.H.S.W., Ucpirti H., Wang S., Radberg G. and Stephansson O., 1992, Use of the distinct element method to perform stress analysis in rock with non-persistent joints to study the effect of joint geometry parameters on the strength and deformability of rock masses, Rock Mech. and Rock Eng, 25, 253-274. https://doi.org/10.1007/BF01041807
  16. Kwon S.K., Chang K.M. and Kang C.H., 1999, Structural analysis for the conceptual design of a high Level radioactive waste repository in a deep deposit, Tunnel and Underground Space, 9, 102-113.
  17. Lemos J.V., Hart R.D. and Cundall P.A., 1985, A generalized distinct element program for modeling jointed rock mass, Proc. Int. Symp. Fund. Rock Joints, Bjorkliden, Sweden, 335-343.
  18. Min K.B. and Thoraval A., 2012, Comparison of two- and three-dimensional approaches for the numerical determination of equivalent mechanical properties of fractured rock masses, Tunnel and Underground Space, 22, 92-105.
  19. Morland L.W., 1976, Elastic anisotropy of regularly jointed media, Rock Mechanics and Rock Engineering, 8, 35-48. https://doi.org/10.1007/BF01239718
  20. Pouya A. and Ghoreychi M., 2001, Determination of rock mass strength properties by homogenization, Int. J. Numer Anal Methods., 25, 1285-1303. https://doi.org/10.1002/nag.176
  21. Pratt H.R., Black A.D., Brown W.S. and Brace W.F., 1972, The effect of specimen size on the mechanical properties of unjointed diorite, Int. J. Rock Mech. and Min. sci., 9, 519-529.
  22. Salamon M.D.G., 1968, Elastic moduli of a stratified rock mass, Int. J. Rock Mech. Min. Sci., 5, 519-538. https://doi.org/10.1016/0148-9062(68)90039-9
  23. Serafim J.L. and Pereira J.P., 1983, Consideration of the geomechanical classification of Bieniawski, Proc. Int. Symp. on Engineering Geology and Underground Construction, Lisbon, 1, 33-44.
  24. Singh B., 1973, Continuum characterization of a jointed rock mass, Int. J. Rock Mech. Min. Sci., 10, 311-335. https://doi.org/10.1016/0148-9062(73)90041-7
  25. Wang S. and Kulatilake P.H.S.W., 1993, Linking between joint geometry models and a distinct element method in three dimensions to perform stress analyses in rock masses containing finite size joints, Jpn. Soc Soil Mech. and Found Eng., 33, 88-98.