DOI QR코드

DOI QR Code

와전류 감쇠기를 적용한 평판의 진동 저감에 관한 실험적 연구

A Experimental Study on Vibration Attenuation of a Plate with Eddy Current Damper

  • 투고 : 2020.01.22
  • 심사 : 2020.04.12
  • 발행 : 2020.05.01

초록

인공위성 중 군사적 성격을 띠는 저궤도 소형 인공위성의 경우 다표적 관측을 필요로 하고 고해상도의 사진 및 영상의 수요가 증가하는 추세이다. 고해상도 영상과 다표적 관측을 위해 인공위성의 기동성이 가장 큰 변수로 작용한다. 소형 인공위성의 경우 고기동성을 갖게 되면 빠르게 자세기동을 할 수 있지만 자세 기동을 완료 후 다음 자세 기동을 할 때 잔류진동이 발생하게 된다. 이에 본 연구에서 자세 기동 후 발생하는 평판의 진동 특성을 검증하기 위하여 자세기동을 모사하기 위한 실험 치구를 제작하고 실험을 수행하였다. 추가로 이러한 진동을 저감시키기 위해 영구자석을 이용한 수동형 감쇠방법으로 와전류 브레이크 시스템을 응용한 와전류 감쇠기를 제시하였다. 와전류 감쇠기를 적용하기 위하여 수학적 모델을 정립하였으며 영구자석의 자속밀도와 공극거리에 따라 이를 실험적으로 구현하였으며, 4개의 태양전지판(평판) 중 1개 평판을 특정하여 와전류감쇠기를 적용유무에 따라 자세 기동 후 발생하는 잔류진동에 대한 저감 성능을 실험적으로 검증하였다.

Among these satellites, low - orbit small satellites with military characteristics require multi - target observation, and demand for high-resolution photographs and images is increasing. Fast maneuverability is the most important factor for high-resolution images and multi - target observations. However, in the case of a small satellites, it is possible to perform the attitude maneuver if it has high speed, but the residual vibration occurs when the attitude maneuver is completed and the next attitude maneuver is completed. In this study, to verify the vibration characteristics of the plate generated after attitude maneuver, an experimental fixture for simulating the attitude maneuver was fabricated and tested. In addition, Eddy Current Damper (ECD) using Eddy Current Brake system (ECB) is proposed as a passive damping method using permanent magnet to reduce vibration. A mathematical model was established to apply ECD and it was experimentally implemented according to the magnetic flux density and the air gap of the permanent magnet. One plate of four solar panels (plate) was specified, the residual vibration reduction performance after the test was verified experimentally.

키워드

참고문헌

  1. Lee, H. H., Kim, H. D., and Park, J. S., "Optimal Design of a High-Agility Satellite Solar Array Module with Genetic Algorithm," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2011, pp. 620-625.
  2. Park, Y. W., Han, J. Y., Bang, H. C., and Park, B. K., "A Study on Ground Verification TESTBED for Three Axis Attitude Control of Satellites - Part 1. Development Study," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 27, No. 5, 1999, pp. 113-121.
  3. Veres, S., Lincoln, N., and Gabriel, S., "Testbed for Satellite Formation Flying under Ground Condition," 2007 European Control Conference (ECC), July 2007, pp. 4009-4015.
  4. Oda, M., Sawada, H., Yoshii, M., Goto, N., Inaba, N., Suzuki, S., and Hagiwara, Y., "Measurement of Satellite Solar Array Panel Vibrations Caused by Thermal Snap and Gas Jet Thruster Firing," Recent Advances in Vibration Analysis Open Access Publisher, September 2011, pp. 123-140.
  5. Wiederick, H. D., Gauthier, N., Campbell, D. A., and Rochon, P., "Magnetic braking: Simple Theory and experiment," Journal of Physics, Vol. 55, No. 6, June 1986, pp. 500-503.
  6. Heald, M. A., "Magnetic braking: Improved theory," American Journal of Physics, Vol. 56, No. 6, September 1988, pp. 521-522. https://doi.org/10.1119/1.15570
  7. Barnes, L., Hardin, J., Gross, C. A., and Wasson, D., "An Eddy Current Braking System," IEEE, 1993, pp. 58-62.
  8. Lee, K. J., and Park, K. H., "Optimal robust control of contactless brake system using an eddy current," Mechatronics 9, 1999, pp. 612-631.
  9. Simeu, E., and Georges, D., "Modeling and Control of an Eddy Current Brake," Control Engineering Practice, Vol. 4, No. 1, 1996, pp. 19-26. https://doi.org/10.1016/0967-0661(95)00202-4
  10. Lee, K. J., and Park, K. H., "Modeling of the eddy currents with the consideration of the induced magnetic flux," IEEE, pp. 762-768.