DOI QR코드

DOI QR Code

Tandem Light Deflector Operated by Electrowetting

전기습윤으로 구동하는 이중 광원 조향장치

  • Received : 2020.04.08
  • Accepted : 2020.04.24
  • Published : 2020.04.30

Abstract

This paper presents a new type of electrowetting driven tandem light deflector for high performance optical application. To steer an incident light, the proposed light deflector deforms the fluid interface using electrowetting actuation. The performance of the light deflector was experimentally verified by using a prototype of the proposed light deflector. Single and tandem light deflectors were separately prepared using microfabrication processes. The optical tests of the deflectors were conducted using a laser light. The proposed tandem light deflector obtained a 45° beam steering angle with a 5.3° deflection angle while a single light deflector was required for a 10.9° deflection angle to obtain the same beam steering angle. The proposed tandem light deflector with high optical capability can be applied to various optical applications from camera modules in mobile smart devices to advanced future optical systems.

Keywords

References

  1. Takie, A., Iwase, E., Hoshino, K., Matsumoto, K., and Shimoyama, I., 2007, "Angle-tunable Liquid Wedge Prism Driven by Electrowetting," Journal of microelectromechanical systems, Vol. 16(6), pp.1537-1542. https://doi.org/10.1109/JMEMS.2007.906074
  2. Smith, N. R. Abeysinghe, D. C., Haus, J. W., and Heikenfeld, J., 2006, "Agile Wide-angle Beam Steering with Electrowetting Microprisms," Optics Express, Vol. 14(14), pp.6557-6563. https://doi.org/10.1364/OE.14.006557
  3. Kinoshita, H., Hoshino, K., Matsumoto, K., and Shimoyama, I., 2006, "A Thin Camera with a Zoom Function Using Reflective Optics," Sensors and Actuators A: Physical, Vol. 128(1), pp.191-196. https://doi.org/10.1016/j.sna.2005.12.046
  4. Han, W., Haus, J. W., Mcmanamon, P., Heikenfeld, J., Smith, N., and Yang, J., 2010, "Transmissive Beam Steering Through Electrowetting Microprism arrays," Optics Express, Vol. 283(6), pp.1174-1181.
  5. Hou, L., 2012, "Advanced 3D Microfabrication and Demonstration of Arrayed Electrowetting Microprism," University of Cincinna.
  6. de Boer, B., Suijver, F., Megens, M., Deladi, S., and Kuiper, S., 2010, "Control of an Electrowetting Based Beam Deflector," Vol. 107(6), pp.063101 https://doi.org/10.1063/1.3319649
  7. Liu, C., Li, L., and Wang, Q. H., 2012, "Liquid Prism for Beam Tracking and Steering," Optical Engineering, Vol. 51(11), pp.114002-114002. https://doi.org/10.1117/1.OE.51.11.114002
  8. Wang, X., Wilson, D., Muller, R., Maker, P., and Psaltis, D., 2000, "Liquid-crystal Blazed-grating Beam Deflector," Applied Optics, 39(35), pp.6545-6555. https://doi.org/10.1364/AO.39.006545
  9. Pishnyak, O., Kreminska, L., Lavrentovich, O. D., Pouch, J. J., Miranda, F. A., and Winker, B. K., 2005, "Liquid Crystal Digital Beam Steering Device Based on Decoupled Birefringent Deflector and Polarization Rotator," Molecular Crystal and Liquid Crystal, Vol. 433(1), pp.279-295. https://doi.org/10.1080/15421400590955587
  10. Stockley, J., and Serati, S., 2004, "Advances in Lquid Crystal Beam Steering," International Society for Optics and Photonics, Vol. 5550, pp32-40.
  11. Pishnyak, O., Kreminska, L., Lavrentovich, O. D., Pouch, J. J., Miranda, F. A., and Winker, B. K., 2005, "Liquid crystal Digital Beam Steering Device Based on Decoupled Birefringent Deflector and Polarization Rotator. Molecular Crystals and Liquid Crystals," Vol. 433(1), pp.279-295. https://doi.org/10.1080/15421400590955587
  12. Park, J. H., and Khoo, I. C., 2005, "Liquid-crystal Beam Steering Device with A Photopolymer Prism," Applied Physics Letters, Vol. 87(9), pp.091110. https://doi.org/10.1063/1.2035869
  13. Khan, S., and Riza, N., 2004, "Demonstration of 3-dimensional Wide Angle Laser Beam Scanner Using Liquid crystals," Optics Express, Vol. 12(5), pp.868-882. https://doi.org/10.1364/OPEX.12.000868
  14. Hou, L., Smith, N. R., and Heikenfeld, J., 2007, "Electrowetting Manipulation of Any Optical Film," Applied physics letters, Vol. 90(25), pp.251114. https://doi.org/10.1063/1.2750544
  15. Yang, J. S., Kwon, J. O., Chae, J. B., Choi, M., and Chung, S. K. 2015, "Electrowetting-on-dielectric (EWOD) Induced Flow Analysis," Journal of Micromechanics and Microengineering, Vol. 25(8), pp.087001. https://doi.org/10.1088/0960-1317/25/8/087001
  16. Mugele, F., and Baret, J. C., 2005, "Electrowetting: From Basics to Applications," Journal of Physics: Condensed Matter, Vol. 17(28), pp.R705. https://doi.org/10.1088/0953-8984/17/28/R01
  17. Quilliet, C., and Berge, B., 2001, "Electrowetting: A Recent Outbreak," Current Opinion in Colloid & Interface Science, Vol. 6(1), pp.34-39. https://doi.org/10.1016/S1359-0294(00)00085-6
  18. Ren, H., and Wu, S. T., 2007, "Variable-focus Liquid Lens," Optics Express, Vol. 15(10), pp.5931-5936 https://doi.org/10.1364/OE.15.005931
  19. Zhang, J., Van Meter, D., Hou, L., Smith, N., Yang, J., Stalcup, A., and Heikenfeld, J., 2009, "Preparation and Analysis of 1-chloronaphthalene for Highly Refractive Electrowetting Optics," Langmuir, Vol. 25(17), pp.10413-10416. https://doi.org/10.1021/la901133k
  20. Hou, L., Zhang, J., Smith, N., Yang, J., and Heikenfeld, J., 2009, "A Full Description of A Scalable Microfabrication Process for Arrayed Electrowetting Microprisms," Journal of Micromechanics and Microengineering, Vol. 20(1), pp.015044. https://doi.org/10.1088/0960-1317/20/1/015044
  21. Cheng, J., and Chen, C. L., 2011, "Adaptive Beam Tracking and Steering Via Electrowetting-controlled Liquid prism," Applied Physics Letters, Vol. 99(19), pp.191108. https://doi.org/10.1063/1.3660578
  22. Chen, H. H., and Fu, C. C., 2011, "Low Voltage Electrowetting Optical Deflector," Japanese Journal of Applied Physics, Vol. 50(3R), pp.037202. https://doi.org/10.1143/JJAP.50.037202
  23. Takei, A., Matsumoto, K., and Shimoyama, I., 2013, "A Thin Electrowetting Controlled Optical System With pan/tilt and Variable Focus Functions," Sensors and Actuators A: Physical, Vol. 194, pp.112-118. https://doi.org/10.1016/j.sna.2013.01.055
  24. Lee, D. G., Park, J., Bae, J., and Kim, H. Y., 2013, "Dynamics of A Microliquid Prism Actuated by Electrowetting. Lab on a Chip," Vol. 13(2), pp.274-279. https://doi.org/10.1039/C2LC41024A
  25. Terrab, S., Watson, A. M., Roath, C., Gopinath, J. T., and Bright, V. M., 2015, "Adaptive Electrowetting Lens-prism Element," Optics Express, Vol. 23(20), pp.25838-25845. https://doi.org/10.1364/OE.23.025838
  26. Shahzad, A., and Song, J. K., 2016, "Beam Deflector and Position Sensor Using Electrowetting and Mechanical Wetting of Sandwiched Droplets," Journal of Physics D: Applied Physics, Vol. 49(38), pp.385106. https://doi.org/10.1088/0022-3727/49/38/385106
  27. Deladi, S., Suijver, J. F., Shi, Y. S., Shahzad, K., De Boer, B. M., Rademakers, A. J. J., Vleuten, D. V. C., Jankovic, L., Bongers, E., Harks, E., and Kuiper, S., 2010, "Miniaturized Ultrasound Scanner by Electrowetting," Applied Physics Letters, Vol. 97(6), pp.064102. https://doi.org/10.1063/1.3478455
  28. Cheng, J., Park, S., and Lungchen, C., 2013, "Optofluidic Solar Concentrators Using Electrowetting Tracking Concept, design, and characterization," Solar Energy, Vol. 89, pp.152-161. https://doi.org/10.1016/j.solener.2012.12.018
  29. Oh, S. H., Rhee, K., & Chung, S. K., 2016, "Electromagnetically Driven Liquid lens," Sensors and Actuators A: Physical, Vol. 240, pp.153-159. https://doi.org/10.1016/j.sna.2016.01.048