DOI QR코드

DOI QR Code

Effect of Sn Addition on Microstructure of Al Alloy Powder for Brazing Process

브레이징용 Al 합금 분말의 미세조직에 미치는 Sn 함량의 영향

  • Kim, Yong-Ho (Korea Institute of Industrial Technology, Smart mobility material & component R&D group) ;
  • Yoo, Hyo-Sang (Korea Institute of Industrial Technology, Smart mobility material & component R&D group) ;
  • Na, Sang-Su (Korea Institute of Industrial Technology, Smart mobility material & component R&D group) ;
  • Son, Hyeon-Taek (Korea Institute of Industrial Technology, Smart mobility material & component R&D group)
  • 김용호 (한국생산기술연구원 스마트모빌리티소재부품연구그룹) ;
  • 유효상 (한국생산기술연구원 스마트모빌리티소재부품연구그룹) ;
  • 나상수 (한국생산기술연구원 스마트모빌리티소재부품연구그룹) ;
  • 손현택 (한국생산기술연구원 스마트모빌리티소재부품연구그룹)
  • Received : 2020.04.13
  • Accepted : 2020.04.23
  • Published : 2020.04.28

Abstract

The powder manufacturing process using the gas atomizer process is easy for mass production, has a fine powder particle size, and has excellent mechanical properties compared to the existing casting process, so it can be applied to various industries such as automobiles, electronic devices, aviation, and 3D printers. In this study, a modified A4032-xSn (x = 0, 1, 3, 5, and 10 wt.%) alloy with low melting point properties is investigated. After maintaining an argon (Ar) gas atmosphere, the main crucible is tilted; containing molten metal at 1,000℃ by melting the master alloy at a high frequency, and Ar gas is sprayed at 10 bar gas pressure after the molten metal inflow to the tundish crucible, which is maintained at 800℃. The manufactured powder is measured using a particle size analyzer, and FESEM is used to observe the shape and surface of the alloy powder. DSC is performed to investigate the change in shape, according to the melting point and temperature change. The microstructure of added tin (Sn) was observed by heat treatment at 575℃ for 10 min. As the content of Sn increased, the volume fraction increased to 1.1, 3.1, 6.4, and 10.9%.

Keywords

References

  1. M. Elmadagli, T. Perry and A. T. Alpas: Wear, 262 (2007) 79. https://doi.org/10.1016/j.wear.2006.03.043
  2. E. A. Starke Jr. and J. T. Staley: Fundamentals of Aluminum Metallugy, R. Lumley (Ed.), Woodhead Publishing (2011) 747.
  3. L. Kloc, S. Spigarelli, E. Cerri, E. Evangelista and T. G. Langdon: Metall. Mater. Trans. A, 27 (1996) 3871. https://doi.org/10.1007/BF02595636
  4. S.-H. Choi, K.-H. Kim, K. H. Oh and D. N. Lee: Mater. Sci. Eng. A, 222 (1997) 158. https://doi.org/10.1016/S0921-5093(96)10514-1
  5. T. Mori and S. Kurimoto: J. Manuf. Sci. Eng., 120 (1998) 179. https://doi.org/10.1115/1.2830098
  6. R. F. Gibson: Principles of Composite Material Mechanics, CRC press, (2016).
  7. G. Bertrand, S. Deleonibus, B. Previtali, G. Guegan, X. Jehl, M. Sanquer and F. Balestra: Solid State Electron., 48 (2004) 505 https://doi.org/10.1016/j.sse.2003.09.026
  8. S.-J. Hong and B.-S. Chun: Mater. Sci. Eng. A, 348 (2003) 262. https://doi.org/10.1016/S0921-5093(02)00728-1
  9. S. Anand, T. S. Srivatsan, Y. Wu and E. J. Lavernia: J. Mater. Sci., 32 (1997) 2835. https://doi.org/10.1023/A:1018668332318
  10. J. Zhou, J. Duszczuk and B. M. Korevaar: J. Mater. Sci., 26 (1991) 5275. https://doi.org/10.1007/BF01143222