DOI QR코드

DOI QR Code

Effect of Phosphorus Addition on Microstructure and Mechanical Properties of Sintered Low Alloy Steel

저합금강 소결체의 미세조직 및 기계적 특성에 미치는 인(P) 첨가의 영향

  • Kim, Yoo-Young (Department of Mechanical Engineering, Gyeongnam National University of Science and Technology) ;
  • Cho, Kwon-Koo (Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University)
  • 김유영 (경남과학기술대학교 기계공학과) ;
  • 조권구 (경상대학교 나노신소재융합공학과 & 그린에너지융합연구소)
  • Received : 2020.01.26
  • Accepted : 2020.02.11
  • Published : 2020.02.28

Abstract

Phosphorus is an element that plays many important roles in powder metallurgy as an alloy element. The purpose of this study is to investigate the influence of phosphorus addition on the microstructures and mechanical properties of sintered low-alloy steel. The sintered low-alloy steels Fe-0.6%C-3.89%Ni-1.95%Cu-1.40%Mo-xP (x=0, 0.05, 0.10, 0.15, 0.20%) were manufactured by compacting at 700 MPa, sintering in H2-N2 at 1260 ℃, rapid cooling, and low-temperature tempering in Ar at 160 ℃. The microstructure, pore, density, hardness, and transverse rupture strength (TRS) of the sintered low-alloy steels were evaluated. The hardness increased as the phosphorus content increased, whereas the density and TRS showed maximum values when the content of P was 0.05%. Based on microstructure observation, the phase of the microstructure changed from bainite to martensite as the content of phosphorus is increased. Hence, the most appropriate addition of phosphorus in this study was 0.05%.

Keywords

References

  1. G. Petzow and HE. Exner: Powder Metall. Int., 21 (1989) 9.
  2. P. Lindskog: Powder Metall., 16 (1973) 374. https://doi.org/10.1179/pom.1973.16.32.013
  3. A. Molinari, G. Straffelini, V. Fontanari and R. Canteri: Powder Metall., 35 (1992) 285. https://doi.org/10.1179/pom.1992.35.4.285
  4. G. Straffelini, V. Fontanari, A. Molinari and B. Tesi: Powder Metall., 36 (1993) 135. https://doi.org/10.1179/pom.1993.36.2.135
  5. M. Campos, D. Sanchez and J. M. Torralba: J. Mater. Process. Technol., 143-144 (2003) 464. https://doi.org/10.1016/S0924-0136(03)00459-X
  6. M. A. Erden, S. Gunduz, M. Turkmen and H. Karabulut: Mater. Sci. Eng., A, 616 (2014) 201. https://doi.org/10.1016/j.msea.2014.08.026
  7. S. Dizdar, H. Grosser and U. Engstrom: Wear, 273 (2011) 17. https://doi.org/10.1016/j.wear.2011.05.004
  8. H. Okamoto: Phase Diagrams of Binary Iron Alloys, ASM International, 9 (1993).
  9. R. M. German and D. S. Madan: Powder Metall., 15 (1984) 441.
  10. P. Engdahl: Modern Dev. In Powder Metall., 20 (1988) 655.
  11. V. Vassileva, D. Krecar, C. Tomastik, Ch. Gierl-Mayer, H. Hutter and H. Danninger: Powder Metall., 15 (2015) 36.
  12. J. Tengzelius: Me. Powder Rep., 48 (1993) 36.
  13. A. Muthuchamy, R. Kumar, A. R. Annamalai, D. K. Agrawal and A. Upadhyaya: Mater. Charact., 114 (2016) 122. https://doi.org/10.1016/j.matchar.2016.02.015
  14. R. Ma, K. Yu, L. Liu, H. Jiang, S. Ye and P. Yu: Metals, 9 (2019) 321. https://doi.org/10.3390/met9030321
  15. B. Uregen, C. Gierl-Mayer and H. Danninger: Powder Metall. Prog., 16 (2016) 1. https://doi.org/10.1515/pmp-2016-0001
  16. S. Trivedi, Y. Mehta, K. Chandra and P. S. Mishra: Bull. Mater. Sci., 33 (2010) 625. https://doi.org/10.1007/s12034-010-0095-8
  17. S. Jafari, A. Beitollahi, B. Eftekhariyekta, K. Kanada, T. Ohkubo, R. Gopalan, G. Herzer and K. Hono: J. Magn. Magn. Mater., 358-359 (2014) 38. https://doi.org/10.1016/j.jmmm.2014.01.032
  18. S. K. Chaurasia, U. Prakash, P. S. Misra and K. Chandra: Bull. Mater. Sci., 35 (2012) 191. https://doi.org/10.1007/s12034-012-0272-z
  19. P. Lindskog, J. Tengzelius and S. A. Kwist: Powder Metall., 10 (1976) 97.