머신러닝 기반 무선 간섭관리 기술 동향

  • Published : 2020.01.30

Abstract

4차 산업혁명 시대에는 무선 연결 기기 수의 급격한 증가와 무선 데이터 량의 폭발적 증대로 인해 무선 간섭관리의 중요성이 더욱 강조되고 있다. 본 고에서는 무선통신에서 간섭관리의 중요성과 기존 기법들의 한계점에 대해 알아보고, 최신 머신러닝 및 딥러닝 기술을 기반으로 간섭관리 문제를 해결하는 시도들에 대해 상세하게 소개한다.

Keywords

References

  1. Cisco Visual Networking Index: Forecast and Methodology, 2016-2021, Cisco, San Jose, CA, USA, Jun. 2017.
  2. P. Cerwall et al., "The ericsson mobility report," Ericsson, Stockholm, Sweden, White Paper EAB-19:007381 Uen, Revision A, Nov. 2019
  3. D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata, and K. Sayana, "Coordinated multipoint transmission and reception in LTE-advanced: deployment scenarios and operational challenges," IEEE Communications Magazine, vol. 50, no. 2, pp. 148-155, Feb. 2012. https://doi.org/10.1109/MCOM.2012.6146494
  4. M. Chiang, P. Hande, T. Lan, and C. W. Tan, "Power control in wireless cellular networks," Foundations and Trends in Network, Apr. 2008.
  5. H. Sato, "The capacity of the Gaussian interference channel under strong interference," IEEE Transactions on Information Theory, vol. 27, no. 6, pp. 786-788, Nov. 1981. https://doi.org/10.1109/TIT.1981.1056416
  6. D. Schmidt, C. Shi, R. Berry, M. Honig, and W. Utschick, "Distributed resource allocation schemes," IEEE Signal Processing Magazine, vol. 26, no. 5, pp. 53-63, Sep. 2009. https://doi.org/10.1109/msrp.2009.933371
  7. Z. Q. Luo and S. Zhang, "Dynamic spectrum management: complexity and duality," IEEE Journal of Selected Topics in Signal Processing, vol. 2, no. 1, pp. 57-73, Feb. 2008. https://doi.org/10.1109/JSTSP.2007.914876
  8. S. S. Christensen, R. Argawal, E. de Carvalho, and J. M. Cioffi, "Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design," IEEE Transactions on Wireless Communications, vol. 7, no. 12, pp. 1-7, Dec. 2008.
  9. K. Gomadam, V. Cadambe, and S. Jafar, "A distributed numerical approach to interference alignment and applications to wireless interference networks," IEEE Transactions on Information Theory, vol. 27, no. 6, pp. 3309-3322, Jun. 2011.
  10. H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, "Learning to optimize training deep neural network for interference management," IEEE Transactions on Signal Processing, vol. 66, no. 20, pp. 5438-5453, Oct. 2018. https://doi.org/10.1109/TSP.2018.2866382
  11. Q. Shi, M. Razaviyayn, Z. Q. Luo, and C. He, "An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel," IEEE Transactions on Signal Process, vol. 59, no. 9, pp. 4331-4340, Sep. 2011. https://doi.org/10.1109/TSP.2011.2147784
  12. W. Lee, M. Kim, and D. H. Cho, ''Deep power control: Transmit power control scheme based on convolutional neural network,'' IEEE Communications Letters, vol. 22, no. 6, pp. 1276-1279, Jun. 2018. https://doi.org/10.1109/LCOMM.2018.2825444
  13. X. Huang, M. Zeng, J. Fan, X. Fan, and X. Tang, "A full duplex D2D clustering resource allocation scheme based on a K-Means algorithm," Hindawi journal Wireless Communications and Mobile Computing, vol. 2018, Article ID. 1843083, pp. 1-8, May 2018.
  14. A. Ge, T. Zhang, Z. Hu, and Z. Zeng, "Principal component analysis based limited feedback scheme for massive MIMO systems," IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, Sep. 2015.
  15. D. Wu, M. Nekovee, and Y. Wang, "Deep learning based autoencoder for interference channel," arXiv e-prints, arXiv:1902.06841, Feb. 2019.
  16. B. C. Chung and D. H. Cho, "Semi-dynamic cell-clustering algorithm based on reinforcement learning in cooperative transmission system," IEEE Systems Journal, vol. 12, no. 4, pp. 3853-3856, Dec. 2018. https://doi.org/10.1109/JSYST.2017.2769679
  17. V. Mnih et al., "Human-level control through deep reinforcement learning". In: Nature 518.7540, pp. 529-533, Feb. 2015. https://doi.org/10.1038/nature14236
  18. K. N. Doan, M. Vaezi, W. Shin, H. V. Poor, H. Shin, and T. Q. S. Quek, "Power allocation in cache-aided NOMA systems: optimization and deep reinforcement learning approaches," IEEE Transactions on Communications, (Early access), Oct. 2019.
  19. Y. S. Nasir and D. Guo, "Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks," IEEE Journal on Selected Areas in Communications, vol. 37, no. 10, pp. 2239-2250, Oct. 2019. https://doi.org/10.1109/JSAC.2019.2933973