References
- E. H. Land, ''The Retinex theory of color vision,'' Sci. Amer., vol. 237, no. 6, pp. 108-128, Dec. 1977. https://doi.org/10.1038/scientificamerican1277-108
- S. Wang, J. Zheng, H.-M. Hu, and B. Li, ''Naturalness preserved enhancement algorithm for non-uniform illumination images,'' IEEE Trans. Image Process., vol. 22, no. 9, pp. 3538-3548, Sep. 2013. https://doi.org/10.1109/TIP.2013.2261309
- X. Fu, D. Zeng, Y. Huang, X.-P. Zhang, and X. Ding, "A weighted variational model for simultaneous reflectance and illumination estimation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2782-2790.
- X. Guo, Y. Li, and H. Ling, ''LIME: Low-light image enhancement via illumination map estimation,'' IEEE Trans. Image Process., vol. 26, no. 2, pp. 982-993, Feb. 2017. https://doi.org/10.1109/TIP.2016.2639450
- W. Kim, ''Image enhancement using patch-based principal energy analysis,'' IEEE Access, vol. 6, pp. 72620- 72628, 2018. https://doi.org/10.1109/ACCESS.2018.2882470
- W. Kim, R. Lee, M. Park, and S-H. Lee, "Low-light image enhancement based on maximal diffusion values," IEEE Access, vol. 7, pp. 129150-129163, Dec. 2019. https://doi.org/10.1109/ACCESS.2019.2940452
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. IEEE Int'l. Conf. Comput. Vis. Patt. Recognit., Jun. 2016, pp. 770-778.
- R. Wang, Q. Zhang, C-W. Fu, X. Shen, W-S. Zheng, and J. Jia, "Underexposed photo enhancement using deep illumination estimation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2019, pp. 6849-6857.
- A. Ignatov, N. Kobyshev, K. Vanhoey, R. Timofte, and L. Van Gool, "DSLR-quality photos on mobile devices with deep convolutional networks," in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 3297-3305.
- J. Park, J-Y. Lee, D. Yoo, and I. S. Kweon "Distort-and-recover: color enhancement using deep reinfoecement learning," in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 5928-5936.
- Y-S. Chen, Y-C. Wang, M-H. Kao, and Y-Y. Chuang, "Deep photo enhancer: unpaired learning for image enhancement from photographs wit GANs," in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 6306-6314.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets," in Proc. Neural Inf. Process. Syst., Dec. 2014, pp. 1-9.
- V. Bychkovsky, S. Paris, E. Chan, and F. Durand, "Learning photographic global tonal adjustment with a database of input / output image pairs," in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2011, pp. 97-104.
- Retinex Theory of Color Vision, NASA, Washington, DC, USA, 2001.
- P. Sen, N. K. Kalantari, M. Yaesoubi, S. Darabi, D. B. Goldman, and E. Shechtman, ''Robust patch-based HDR reconstruction of dynamic scenes,'' ACM Trans. Graph., vol. 31, no. 6, 2012, Art. no. 203.
- A. Mittal, R. Soundararajan, and A. C. Bovik, "Making a "completely blind'' image quality analyzer," IEEE Signal Process. Lett., vol. 20, no. 3, pp. 209-212, Mar. 2013. https://doi.org/10.1109/LSP.2012.2227726
- K. Gu, S. Wang, G. Zhai, S. Ma, X. Yang, W. Lin, W. Zhang, and W. Gao, "Blind quality assessment of tone-mapped images via analysis of information, naturalness, and structure," IEEE Trans. Multimedia, vol. 18, no. 3, pp. 432-443, Mar. 2016. https://doi.org/10.1109/TMM.2016.2518868
- K. Gu, W. Lin, G. Zhai, X. Yang, W. Zhang, and C. W. Chen, "No-reference quality metric of contrast-distorted images based on information maximization," IEEE Trans. Cybern., vol. 47, no. 12, pp. 4559-4565, Dec. 2017. https://doi.org/10.1109/TCYB.2016.2575544
- K. Gu, D. Tao, J.-F. Qiao, and W. Lin, "Learning a no-reference quality assessment model of enhanced images with big data," IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 4, pp. 1301-1313, Apr. 2018. https://doi.org/10.1109/TNNLS.2017.2649101