DOI QR코드

DOI QR Code

Low Noise Phase Locked Loop with Negative Feedback Loop including Frequency Variation Sensing Circuit

주파수 변화 감지 회로를 포함하는 부궤환 루프를 가지는 저잡음 위상고정루프

  • Choi, Young-Shig (Department of Electronic Engineering, Pukyong National University)
  • Received : 2020.02.17
  • Accepted : 2020.03.25
  • Published : 2020.04.30

Abstract

A low phase noise phase locked loop (PLL) with negative feedback loop including frequency variation sensing circuit (FVSC) has been proposed. The FVSC senses the frequency variation of voltage controlled oscillator output signal and controls the volume of electric charge in loop filter capacitance. As the output frequency of the phase locked loop increases, the FVSC reduces the loop filter capacitor charge. This causes the loop filter output voltage to decrease, resulting in a phase locked loop output frequency decrease. The added negative feedback loop improves the phase noise characteristics of the proposed phase locked loop. The size of capacitance used in FVSC is much smaller than that of loop filter capacitance resulting in no effect in the size of the proposed PLL. The proposed low phase noise PLL with FVSC is designed with a supply voltage of 1.8V in a 0.18㎛ CMOS process. Simulation results show the jitter of 273fs and the locking time of 1.5㎲.

본 논문에서는 주파수 변화 감지 회로 (FVSC : frequency variation sensing circuit)를 포함하는 부궤환 루프를 가지는 저잡음 위상고정루프를 제안하였다. 위상 고정 상태에서 전압제어발진기의 출력주파수가 변화할 때 주파수 변화 감지 회로는 루프 필터의 커패시터의 전하량을 조절하여 제안한 위상고정루프의 위상잡음과 지터 특성을 개선할 수 있다. 위상고정루프의 출력 주파수가 증가하면 주파수 변화 감지 회로가 루프 필터 커패시터 전하를 감소시킨다. 이는 루프필터 출력 전압을 하강하게 하여 위상고정루프 출력 주파수가 하강하게 된다. 추가된 부궤환 루프는 제안한 위상고정루프의 위상잡음 특성을 더욱 더 좋게 한다. 주파수 변화 감지 회로에 사용된 커패시터 크기는 영점을 결정하는 루프 필터 커패시터 크기와 비교하여도 아주 작은 크기이어서 칩 크기에 영향을 미치지 않는다. 제안된 저잡음 위상고정루프는 1.8V 0.18㎛ CMOS 공정을 이용하여 설계되었다. 시뮬레이션 결과는 273fs 지터와 1.5㎲ 위상고정시간을 보여주었다.

Keywords

References

  1. X. Gao, E. Klumperink, M. Bohsali, and B. Nauta, "A low-noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N2 ," IEEE J. solid state circuits, vol. 44, no. 12, pp. 3253-3263, Dec. 2009. https://doi.org/10.1109/JSSC.2009.2032723
  2. Z. Zhang , G. Zhu and C. Patrick Yue, "A 0.65V 12-to-16GHz Sub-Sampling PLL with 56.5fs Integrated Jitter and -256.4dBm FoM," IEEE ISSSC, pp. 488-489. Feb. 2019.
  3. Z. Yang, Y. Chen, S. Yang, P. Mak, R. Matins, "A 25.4-to-29.5 GHz 10.2mW isolated subsampling PLL achieving -252.9dB jitter-power FoM and -63dBc reference spur," IEEE ISSCC, pp. 270-271, Feb. 2019.
  4. Sheng Ye, Lars Jansson and Ian Galton, "A Multiple-Crystal Interface PLL with VCO Realignment to Reduce Phase Noise," IEEE J. solid state circuits, vol. 37, no. 12, pp. 1795-1803, Dec. 2002. https://doi.org/10.1109/JSSC.2002.804339
  5. Z. Zhang, L. Liu. P. Feng and N. Wu, "A 2.4-3.5-GHz Wideband Subharmonically Injection-Locked PLL With Adaptive Injection Timing Alignment Technique," IEEE Tran. VLSI Systems, vol. 25, no. 3, 929-941, Mar. 2017. https://doi.org/10.1109/TVLSI.2016.2619362
  6. A. Musa, W. Deng, T. Siriburanon, K. Okada and A. Matsuzawa, "A compact low-power and low-jitter dual loop injection locked PLL using all-digital PVT calibration," IEEE J. solid state circuits, vol. 49, no. 1, pp. 50-60, Jan. 2014. https://doi.org/10.1109/JSSC.2013.2284651
  7. D. Kim, S. Cho, "A hybrid PLL using low-power GRO-TDC for reduced in-band phase noise," IEEE Tran. Circuit and Systems-II, vol. 66, no. 2, pp. 232-236, Feb. 2019. https://doi.org/10.1109/TCSII.2018.2848218