DOI QR코드

DOI QR Code

The Paint Prepared Using 2D Materials: An Evaluation of Heat Dissipation and Anticorrosive Performance

  • Bhang, Seok Jin (Korea Coating Technology Center, Pukyong National University) ;
  • Kim, Hyunjoong (Korea Coating Technology Center, Pukyong National University) ;
  • Shin, An Seob (Korea Coating Technology Center, Pukyong National University) ;
  • Park, Jinhwan (Korea Coating Technology Center, Pukyong National University)
  • Received : 2020.01.05
  • Accepted : 2020.02.05
  • Published : 2020.02.28

Abstract

Heat sinks are most widely used in thermal management systems; however, the heat dissipation efficiency is usually limited. Therefore, in order to increase heat dissipation efficiency of the heat sink, the heat-dissipating paint using 2D materials (hexagonal boron nitride (h-BN) and graphene) as thermally conductive additive was designed and evaluated in the present study. The heat dissipation performance of the paint was calculated from temperature difference between the paint-coated and -uncoated specimens mounted on the heat source. The highest heat dissipation performance was obtained when the ratio of h-BN to resin was 1/10 in the paint. In addition, further reduction in the temperature of the test specimen by 6.5 ℃ was achieved. The highest heat dissipation performance of the paint prepared using graphene was achieved at a 1/50 ratio of graphene to the resin, and a 6.5 ℃ reduction was attained. In addition, graphene exhibited enhanced corrosion resistance property of heat-dissipating paint by inhibiting the growth of the paint blisters.

Keywords

References

  1. Y. Wang, L. Xu, Z. Yang, H. Xie, P. Jiang, J. Dai, W. Luo, Y. Yao, E. Hitz, R. Yang, B. Yang, and L. Hu, Nanoscale, 10, 167 (2018). https://doi.org/10.1039/c7nr07058f
  2. H. Song, J. Liu, B. Liu, J. Wu, H.-M. Cheng, and F. Kang, Joule, 2, 442 (2018). https://doi.org/10.1016/j.joule.2018.01.006
  3. A. L. Moore and L. Shi, Mater. Today, 17, 163 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
  4. X. Luo, R. Hu, S. Liu, and K. Wang, Prog. Energy Combust. Sci., 56, 1 (2016). https://doi.org/10.1016/j.pecs.2016.05.003
  5. P. Zhang, J. Zeng, S. Zhai, Y. Xian, D. Yang, and Q. Li, Macromol. Mater. Eng., 302, 1700068 (2017). https://doi.org/10.1002/mame.201700068
  6. M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, and O. Regev, Chem. Mater., 27, 2100 (2015). https://doi.org/10.1021/cm504550e
  7. Q. Weng, X. Wang, X. Wang, Y. Bando, and D. Golberg, Chem. Soc. Rev., 45, 3989 (2016). https://doi.org/10.1039/c5cs00869g
  8. I. Jo, M. T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, and L. Shi, Nano Lett., 13, 550 (2013). https://doi.org/10.1021/nl304060g
  9. X. -H. Zha, Q. Huang, J. He, H. He, J. Zhai, J. S. Francisco, and S. Du, Sci. Rep., 6, 27971 (2016). https://doi.org/10.1038/srep27971
  10. Y. Liu, Z. -Y. Ong, J. Wu, Y. Zhao, K. Watanabe, T. Tanniguchi, D. Chi, G. Zhang, J. T. L. Thong, C. -W. Qiu, and K. Hippalgaonkar, Sci. Rep., 7, 43886 (2017). https://doi.org/10.1038/srep43886
  11. S. Lee, F. Yang, J. Suh. S. Yang, Y. Lee, G. Li, H. S. Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, Nat. Comm., 6, 8573 (2015). https://doi.org/10.1038/ncomms9573
  12. M. Akhtar, G. Anderson, R. Zhao, A. Alruqi, J. E. Mroczkowska, G. Sumanasekera, and J. B. Jasinski, NPJ 2D Mater. Appl., 1, 5 (2017). https://doi.org/10.1038/s41699-017-0007-5
  13. A. A. Balandin, Nat. Mater., 10, 569 (2011). https://doi.org/10.1038/nmat3064
  14. K. Watanabe, T. Taniguchi, and H. Knada, Nat. Mater., 3, 404 (2004). https://doi.org/10.1038/nmat1134
  15. K. M. F. Shahil and A. A. Balandin, Nano Lett., 12, 861 (2012). https://doi.org/10.1021/nl203906r
  16. H. Zhu, Y. Li, Z. Fang, J. Xu, F. Cao, J. Wan, C. Preston, B. Yang, and L. Hu, ACS Nano, 8, 3606 (2014). https://doi.org/10.1021/nn500134m
  17. W. -L. Song, P. Wang, L. Cao, A. Anderson, M. J. Meziani, A. J. Farr, and Y. -P. Sun, Angew. Chem. Int. Ed., 51, 6498 (2012). https://doi.org/10.1002/anie.201201689
  18. Angstron Materials, https://www.theglobalgraphenegroup.com/powders
  19. Yeeyoung Cerachem, http://www.yeeyoung.com/sub_02/sub_01.php?c1=01&c2=29
  20. Aluminum alloy, https://en.wikipedia.org/wiki/6061_aluminium_alloy
  21. ISO 2409:2007, Paints and varnishes - Cross cut test, International standard, May (2007).
  22. S. J. Bhang, H. Kim, K. R. Kim, and J. Park, Phys. Status Solidi A, 216, 1800512 (2019). https://doi.org/10.1002/pssa.201800512
  23. ASTM D1645-08, Standard test methods for evaluation of painted or coated specimens subjected to corrosive environments, November (2008).
  24. ASTM G85-11, Standard practice for modified salt spray (fog) testing, May (2011).
  25. ASTM D3359-09, Standard test methods for measuring adhesion by tape test, June (2009).
  26. H. S. Kim, H. S. Bae, J. Yu, and S. Y. Kim, Sci. Rep., 6, 26825 (2016). https://doi.org/10.1038/srep26825
  27. J. H. Jeon, H. Kim, S. J. Bhang, J. Cho, A. S. Shin, and J. Park, Proc. 59th KSIEC Meeting, p. 195, The Korean Society of Industrial and Engineering Chemistry, Busan, Korea (2019).
  28. D. Prasai, J. C. Tuberquia, R. R. Harl, G. K. Jennings, and K. I. Bolotin, ACS Nano, 6, 1102 (2012). https://doi.org/10.1021/nn203507y
  29. M. Cui, S. Ren, H. Zhao, Q. Xue, and L. Wang, Chem. Eng. J., 335, 255 (2018). https://doi.org/10.1016/j.cej.2017.10.172
  30. F. Zhong, Y. He, P. Wang, C. Chen, Y. Lin, Y. Wu, and J. Chen, Appl. Surf. Sci., 488, 801 (2019). https://doi.org/10.1016/j.apsusc.2019.05.321
  31. J. S. Kim, M.S. Thesis, Pukyong National University, Busan (2018).