References
- Beechar VB, Zinn PO, Heck KA, Fuller GN, Han I, Patel AJ, et al. : Spinal epidermoid tumors: case report and review of the literature. Neurospine 15 : 117-122, 2018 https://doi.org/10.14245/ns.1836014.007
- Bi L, Kim J, Kumar A, Feng D, Fulham M : Synthesis of Positron Emission Tomography (PET) Images via Multi-channel Generative Adversarial Networks (GANs) in Cardoso MJ, Arbel T (eds) : Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment. Cham : Springer, 2017, pp43-51
- Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA : Generative adversarial networks: an overview. IEEE Signal Processing Magazine 35 : 53-65, 2018 https://doi.org/10.1109/msp.2017.2765202
- Feng R, Badgeley M, Mocco J, Oermann EK : Deep learning guided stroke management: a review of clinical applications. J Neurointerv Surg 10 : 358-362, 2018 https://doi.org/10.1136/neurintsurg-2017-013355
- Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. : Generative adversarial nets. Adv Neural Inf Process Syst 27 : 2672-2680, 2014
- He K, Zhang X, Ren S, Sun J : Deep residual learning for image recognition. Proc IEEE Int Conf Comput Vis 770-778, 2016
- Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Shichijo S, Ozawa T, et al. : Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 21 : 653-660, 2018 https://doi.org/10.1007/s10120-018-0793-2
- Isola P, Zhu JY, Zhou T, Efros AA : Image-to-image translation with conditional adversarial networks. Proc IEEE Int Conf Comput Vis 1125-1134, 2017
- Jin CB, Kim H, Jung W, Joo S, Park E, Saem AY, et al : Deep CT to MR synthesis using paired and unpaired data. Sensors (Basel) 19 : 2019, 2019 https://doi.org/10.3390/s19092019
- Johnson J, Alahi A, Fei-Fei L : Perceptual Losses for Real-Time Style Transfer and Super-Resolution in Leibe B, Matas J, Sebe N, Welling M (eds) : Computer Vision - ECCV 2016. Cham : Springer, 2016, pp694-711
- Kingma DP, Ba J : Adam: a method for stochastic optimization. Available at : https://arxiv.org/abs/1412.6980
- Nie D, Trullo R, Lian J, Petitjean C, Ruan S, Wang Q, et al. : Medical image synthesis with context-aware generative adversarial networks. Med Image Comput Comput Assist Interv 10435 : 417-425, 2017
- Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, et al. : Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop 88 : 581-586, 2017 https://doi.org/10.1080/17453674.2017.1344459
- Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA : Context encoders: feature learning by inpainting. Proc IEEE Int Conf Comput Vis 2536-2544, 2016
- Ulyanov D, Vedaldi A, Lempitsky V : Instance normalization: the missing ingredient for fast stylization. Available at : https://arxiv.org/abs/1607.08022
- Wolterink JM, Dinkla AM, Savenije MH, Seevinck PR, van den Berg CA, Isgum I : Deep MR to CT synthesis using unpaired data. Available at : https://arxiv.org/abs/1708.01155
- Xu B, Wang N, Chen T, Li M : Empirical evaluation of rectified activations in convolutional network. Available at : https://arxiv.org/abs/1505.00853
- Zhao R, Zhao JJ, Dai F, Zhao FQ : A new image secret sharing scheme to identify cheaters. Computer Standards & Interfaces 31 : 252-257, 2009 https://doi.org/10.1016/j.csi.2007.10.012
Cited by
- A Review on the Use of Artificial Intelligence in Spinal Diseases vol.14, pp.4, 2020, https://doi.org/10.31616/asj.2020.0147
- Generative adversarial networks in ophthalmology: what are these and how can they be used? vol.32, pp.5, 2020, https://doi.org/10.1097/icu.0000000000000794
- A review on medical imaging synthesis using deep learning and its clinical applications vol.22, pp.1, 2020, https://doi.org/10.1002/acm2.13121
- Applications of Artificial Intelligence in Musculoskeletal Imaging: From the Request to the Report vol.72, pp.1, 2021, https://doi.org/10.1177/0846537120947148
- Validation of a gyroscope-based wearable device for real-time position monitoring of patients in a hospital vol.29, pp.4, 2021, https://doi.org/10.3233/thc-202575
- Synthesizing High-b-Value Diffusion-weighted Imaging of the Prostate Using Generative Adversarial Networks vol.3, pp.5, 2020, https://doi.org/10.1148/ryai.2021200237
- Artificial Intelligence and Computer Vision in Low Back Pain: A Systematic Review vol.18, pp.20, 2020, https://doi.org/10.3390/ijerph182010909
- AI musculoskeletal clinical applications: how can AI increase my day-to-day efficiency? vol.51, pp.2, 2022, https://doi.org/10.1007/s00256-021-03876-8