DOI QR코드

DOI QR Code

Multiple Tolerances and Dye Decolorization Ability of a Novel Laccase Identified from Staphylococcus Haemolyticus

  • Li, Xingxing (College of Animal Science and Technology, Northwest A&F University) ;
  • Liu, Dongliang (College of Animal Science and Technology, Northwest A&F University) ;
  • Wu, Zhaowei (College of Animal Science and Technology, Northwest A&F University) ;
  • Li, Dan (College of Animal Science and Technology, Northwest A&F University) ;
  • Cai, Yifei (College of Animal Science and Technology, Northwest A&F University) ;
  • Lu, Yao (College of Animal Science and Technology, Northwest A&F University) ;
  • Zhao, Xin (College of Animal Science and Technology, Northwest A&F University) ;
  • Xue, Huping (College of Animal Science and Technology, Northwest A&F University)
  • 투고 : 2019.10.28
  • 심사 : 2020.01.20
  • 발행 : 2020.04.28

초록

Laccases are multicopper oxidases with important industrial value. In the study, a novel laccase gene (mco) in a Staphylococcus haemolyticus isolate is identified and heterologously expressed in Escherichia coli. Mco shares less than 40% of amino acid sequence identities with the other characterized laccases, exhibiting the maximal activity at pH 4.0 and 60℃ with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) as a substrate. Additionally, the Mco is tolerant to a wide range of pH, heavy metal ions and many organic solvents, and it has a high decolorization capability toward textile dyes in the absence of redox mediators. The characteristics of the Mco make this laccase potentially useful for industrial applications such as textile finishing. Based on BLASTN results, mco is found to be widely distributed in both the bacterial genome and bacterial plasmids. Its potential role in oxidative defense ability of staphylococci may contribute to the bacterial colonization and survival.

키워드

참고문헌

  1. Martins LO, Durao P, Brissos V, Lindley PF. 2015. Laccases of prokaryotic origin: enzymes at the interface of protein science and protein technology. Cell Mol. Life Sci. 72: 911-922. https://doi.org/10.1007/s00018-014-1822-x
  2. Senthivelan T, Kanagaraj J, Panda RC. 2016. Recent trends in fungal laccase for various industrial applications: an eco-friendly approach - a review. Biotechnol. Bioprocess Eng. 21: 19-38. https://doi.org/10.1007/s12257-015-0278-7
  3. Morozova V, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI. 2007. "Blue" laccases. Biochemistry 72: 1136-1150. https://doi.org/10.1134/S0006297907100112
  4. Rivera-Hoyos CM, Morales-Alvarez ED, Poutou-Pinales RA, Pedroza-Rodriguez AM, Rodriguez-Vazquez R, Delgado-Boada JM. 2013. Fungal Biol. Rev. 27: 67-82. https://doi.org/10.1016/j.fbr.2013.07.001
  5. Dwivedi UN, Singh P, Pandey VP, Kumar A. 2011. Structure-function relationship among bacterial, fungal and plant laccases. J. Mol. Catal. B-Enzym 68: 117-128. https://doi.org/10.1016/j.molcatb.2010.11.002
  6. Fan FF, Zhuo R, Sun S, Wan X, Jiang ML, Zhang XY, Yang Y. 2011. Cloning and functional analysis of a new laccase gene from Trametes sp 48424 which had the high yield of laccase and strong ability for decolorizing different dyes. Bioresour. Technol. 102: 3126-3137. https://doi.org/10.1016/j.biortech.2010.10.079
  7. Fang Z, Li TL, Wang QA, Zhang XC, Peng H, Fang W, et al. 2011. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Appl. Microbiol. Biotechnol. 89: 1103-1110. https://doi.org/10.1007/s00253-010-2934-3
  8. Santhanam N, Vivanco JM, Decker SR, Reardon KF. 2011. Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol. 29: 480-489. https://doi.org/10.1016/j.tibtech.2011.04.005
  9. Reiss R, Ihssen J, Thony-Meyer L. 2011. Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. BMC Biotechnol. 11: 9. doi: 10.1186/1472-6750-11-9.
  10. Sitarz AK, Mikkelsen JD, Meyer AS. 2016. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications. Crit. Rev. Biotechnol. 36: 70-86. https://doi.org/10.3109/07388551.2014.949617
  11. Gupta N, Lee FS, Farinas ET. 2010. Laboratory evolution of laccase for substrate specificity. J. Mol. Catal. B-Enzym. 62: 230-234. https://doi.org/10.1016/j.molcatb.2009.10.012
  12. Xue HP, Zhou JG, You C, Huang Q, Lu H. 2012. Amino acid substitutions in the N-terminus, cord and alpha-helix domains improved the thermostability of a family 11 xylanase XynR8. J. Ind. Microbiol. Biotechnol. 39: 1279-1288. https://doi.org/10.1007/s10295-012-1140-y
  13. Sharma P, Goel R, Capalash N. 2007. Bacterial laccases. World J. Microbiol. Biotechnol. 23: 823-832. https://doi.org/10.1007/s11274-006-9305-3
  14. Ruijssenaars HJ, Hartmans S. 2004. A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Appl. Microbiol. Biotechnol. 65: 177-182. https://doi.org/10.1007/s00253-004-1571-0
  15. Miyazaki K. 2005. A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9: 415-425. https://doi.org/10.1007/s00792-005-0458-z
  16. Ayed L, Bakir K, Ben Mansour H, Hammami S, Cheref A, Bakhrouf A. 2017. In vitro mutagenicity, NMR metabolite characterization of azo and triphenylmethanes dyes by adherents bacteria and the role of the "cna" adhesion gene in activated sludge. Microb. Pathog. 103: 29-39. https://doi.org/10.1016/j.micpath.2016.12.016
  17. Marchler-Bauer A, Zheng CJ, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, et al. 2013. CDD: conserved domains and protein threedimensional structure. Nucleic Acids Res. 41: D348-D352. https://doi.org/10.1093/nar/gks1243
  18. Si W, Wu ZW, Wang LL, Yang MM, Zhao X. 2015. Enzymological characterization of Atm, the first laccase from Agrobacterium sp. S5-1, with the ability to enhance In Vitro digestibility of Maize Straw. PLoS One 10(5): e0128204. https://doi.org/10.1371/journal.pone.0128204
  19. Wu J, Kim KS, Lee JH, Lee YC. 2010. Cloning, expression in Escherichia coli, and enzymatic properties of laccase from Aeromonas hydrophila WL-11. J. Environ. Sci.-China 22: 635-640. https://doi.org/10.1016/S1001-0742(09)60156-X
  20. Ai MQ, Wang FF, Huang F. 2015. Purification and characterization of a thermostable laccase from Trametes trogii and its ability in modification of kraft lignin. J. Microbiol. Biotechnol. 25: 1361-1370. https://doi.org/10.4014/jmb.1502.02022
  21. Lorenzo M, Moldes D, Sanroman MA. 2006. Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolourise dyes. Chemosphere 63: 912-917. https://doi.org/10.1016/j.chemosphere.2005.09.046
  22. Xue HP, Wu ZW, Li LP, Li F, Wang YQ, Zhao X. 2015. Coexistence of heavy metal and antibiotic resistance within a novel composite Staphylococcal cassette chromosome in a Staphylococcus haemolyticus isolate from bovine mastitis milk. Antimicrob. Agents Chemother. 59: 5788-5792. https://doi.org/10.1128/AAC.04831-14
  23. Qi Li, Lin Ge, Junli Cai, Jianjun Pei, Jingcong Xie, Linguo Zhao. 2014. Comparison of two laccases from Trametes versicolor for application in the decolorization of dyes. J. Microbiol. Biotechnol. 24: 545-555. https://doi.org/10.4014/jmb.1310.10079
  24. Park K M, Park S S. 2008. Purification and characterization of laccase from basidiomycete Fomitella fraxinea. J. Microbiol. Biotechnol. 18: 670-675.
  25. Jeon S J, Lim S J. 2017. Purification and characterization of the laccase involved in dye decolorization by the white-rot fungus Marasmius scorodonius. J. Microbiol. Biotechnol. 27: 1120-1127. https://doi.org/10.4014/jmb.1701.01004
  26. Qihao Yang , Mengle Zhang, Manman Zhang , Chunqing Wang, Yanyan Liu, Xinjiong Fan et al. 2018. Characterization of a novel, cold-adapted, and thermostable laccase-like enzyme with high tolerance for organic solvents and salt and potent dye decolorization ability, derived from a marine metagenomic library. Front. Microbiol. 9: 2998. https://doi.org/10.3389/fmicb.2018.02998
  27. Ligia O Martins, Paulo Durao, Vania Brissos, Peter F Lindley. 2015. Laccases of prokaryotic origin: enzymes at the interface of protein science and protein technology. Cell. Mol. Life Sci. 72: 911-922. https://doi.org/10.1007/s00018-014-1822-x
  28. C Madzak , M C Mimmi, E Caminade, A Brault, S Baumberger, P Briozzo, et al.205. Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Protein Eng. Des. Sel. 19: 77-84. https://doi.org/10.1093/protein/gzj004
  29. Wei Si, ZhaoWei Wu , LiangLiang Wang, MingMing Yang, Xin Zhao. 2015. Enzymological characterization of Atm, the first laccase from Agrobacterium sp. S5-1, with the ability to enhance in vitro digestibility of maize straw. PLoS One 10: e0128204. https://doi.org/10.1371/journal.pone.0128204
  30. Ye M, Li G, Liang WQ, Liu YH. 2010. Molecular cloning and characterization of a novel metagenome-derived multicopper oxidase with alkaline laccase activity and highly soluble expression. Appl. Microbiol. Biotechol. 87:1023-1031. https://doi.org/10.1007/s00253-010-2507-5
  31. Arora DS, Sharma RK. 2010. Ligninolytic fungal laccases and their biotechnological applications. Appl. Biochem. Biotechnol. 160: 1760-1788. https://doi.org/10.1007/s12010-009-8676-y
  32. Fang ZM, Li TL, Chang F, Zhou P, Fang W, Hong YZ, et al. 2012. A new marine bacterial laccase with chloride-enhancing, alkalinedependent activity and dye decolorization ability. Bioresour. Technol. 111: 36-41. https://doi.org/10.1016/j.biortech.2012.01.172
  33. Moldes D, Sanroman MA. 2006. Amelioration of the ability to decolorize dyes by laccase: relationship between redox mediators and laccase isoenzymes in Trametes versicolor. World J. Microbiol. Biotechol. 22: 1197-1204. https://doi.org/10.1007/s11274-006-9161-1
  34. Claus H, Faber G, Konig H. 2002. Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl. Microbiol. Biotechnol. 59: 672-678. https://doi.org/10.1007/s00253-002-1047-z
  35. Morita Y, Nakamura T, Hasan Q, Murakami Y, Yokoyama K, Tamiya E. 1997. Cold-active enzymes from cold-adapted bacteria. J. Am. Oil. Chem. Soc. 74: 441-444. https://doi.org/10.1007/s11746-997-0103-3
  36. Wu YR, Luo ZH, Chow RKK, Vrijmoed LLP. 2010. Purification and characterization of an extracellular laccase from the anthracenedegrading fungus Fusarium solani MAS2. Bioresour. Technol. 101: 9772-9777. https://doi.org/10.1016/j.biortech.2010.07.091
  37. Si J, Peng F, Cui BK. 2013. Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens. Bioresour. Technol 128: 49-57. https://doi.org/10.1016/j.biortech.2012.10.085
  38. Ma J, Xu ZS, Wang F, Xiong AS. 2015. Isolation, purification and characterization of two laccases from carrot (Daucus carota L.) and their response to abiotic and metal ions stresses. Protein J. 34: 444-452. https://doi.org/10.1007/s10930-015-9639-5
  39. Baker J, Sitthisak S, Sengupta M, Johnson M, Jayaswal RK, Morrissey JA. 2010. Copper stress induces a global stress response in Staphylococcus aureus and represses sae and agr expression and biofilm formation. Appl. Environ. Microb. 76: 150-160. https://doi.org/10.1128/AEM.02268-09
  40. Tree JJ, Ulett GC, Ong CLY, Trott DJ, McEwan AG, Schembri MA. 2008. Trade-off between iron uptake and protection against oxidative stress: Deletion of cueO promotes uropathogenic Escherichia coli virulence in a mouse model of urinary tract infection. J. Bacteriol. 190: 6909-6912. https://doi.org/10.1128/JB.00451-08
  41. Gaupp R, Ledala N, Somerville GA. 2012. Staphylococcal response to oxidative stress. Front. Cell Infect. Microbiol. 2: 33.

피인용 문헌

  1. Recombinant laccase production from Bacillus licheniformis O12: Characterization and its application for dye decolorization vol.76, pp.11, 2020, https://doi.org/10.1007/s11756-021-00847-1