References
- Nazareth TM, Bordin K, Manyes L, Meca G, Manes J, Luciano FB. 2016. Gaseous allyl isothiocyanate to inhibit the production of aflatoxins, beauvericin and enniatins by Aspergillus parasiticus and Fusarium poae in wheat flour. Food Control. 62: 317-321. https://doi.org/10.1016/j.foodcont.2015.11.003
- Siahmoshteh F, Hamidi-Esfahani Z, Spadaro D, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. 2018. Unraveling the mode of antifungal action of Bacillus subtilis and Bacillus amyloliquefaciens as potential biocontrol agents against aflatoxigenic Aspergillus parasiticus. Food Control. 89: 300-307. https://doi.org/10.1016/j.foodcont.2017.11.010
- Cabral LD, Pinto VF, Patriarca A. 2013. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int. J. Food Microbiol. 166: 1-14. https://doi.org/10.1016/j.ijfoodmicro.2013.05.026
- Moss MO. 2008. Fungi, quality and safety issues in fresh fruits and vegetables. J. Appl Microbiol. 104: 1239-1243. https://doi.org/10.1111/j.1365-2672.2007.03705.x
- Hohler D. 1998. Ochratoxin A in food and feed: occurrence, legislation and mode of action. Z. Ernahrungswiss 37: 2-12. https://doi.org/10.1007/PL00007368
- Suarez-Quiroz ML, Campos AA, Alfaro GV, Gonzalez-Rios O, Villeneuve P, Figueroa-Espinoza MC. 2013. Anti-Aspergillus activity of green coffee 5-O-caffeoyl quinic acid and its alkyl esters. Microb. Pathogenesis. 61-62: 51-56. https://doi.org/10.1016/j.micpath.2013.05.005
- Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D. 2004. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 80: 1106-1122. https://doi.org/10.1093/ajcn/80.5.1106
- Oliveira PM, Zannini E, Arendt EK. 2014. Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: From crop farming to cereal products. Food Microbiol. 37: 78-95. https://doi.org/10.1016/j.fm.2013.06.003
- Mishra PK, Singh P, Prakash B, Kedia A, Dubey NK, Chanotiya CS. 2013. Assessing essential oil components as plant-based preservatives against fungi that deteriorate herbal raw materials. Int. Biodeterior. Biodegradation 80: 16-21. https://doi.org/10.1016/j.ibiod.2012.12.017
- Ma MM, Wen XF, Xie YT, Guo Z, Zhao RB, Yu P, et al. 2018. Antifungal activity and mechanism of monocaprin against food spoilage fungi. Food Control. 84: 561-568. https://doi.org/10.1016/j.foodcont.2017.07.022
- Luo CY, Zeng ZL, Gong DM, Zhao CY, Liang QF, Zeng C. 2014. Evaluation of monolaurin from camphor tree seeds for controlling food spoilage fungi. Food Control. 46: 488-494. https://doi.org/10.1016/j.foodcont.2014.06.017
- Altieri C, Bevilacqua A, Cardillo D, Sinigaglia M. 2009. Antifungal activity of fatty acids and their monoglycerides against Fusarium spp. in a laboratory medium. Int. J. Food Sci. Tech. 44: 242-245. https://doi.org/10.1111/j.1365-2621.2007.01639.x
- Mueller EA, Schlievert PM. 2015. Non-Aqueous glycerol monolaurate gel exhibits antibacterial and anti-biofilm activity against gram-positive and gram-negative pathogens. PLoS One 10(3): e0120280. https://doi.org/10.1371/journal.pone.0120280
- Zhang H, Taxipalati M, Yu LY, Que F, Feng FQ. 2013. Structure activity relationship of a U-type antimicrobial microemulsion system. PLoS One. 8: e76245. https://doi.org/10.1371/journal.pone.0076245
- Obonyo M, Zhang L, Thamphiwatana S, Pornpattananangkul D, Fu V, Zhang LF. 2012. Antibacterial activities of liposomal linolenic acids against antibiotic-resistant helicobacter pylori. Mol. Pharmaceut. 9: 2677-2685. https://doi.org/10.1021/mp300243w
- Umerska A, Cassisa V, Matougui N, Joly-Guillou ML, Eveillard M, Saulnier P. 2016. Antibacterial action of lipid nanocapsules containing fatty acids or monoglycerides as co-surfactants. Eur. J. Pharm. Biopharm. 108: 100-110. https://doi.org/10.1016/j.ejpb.2016.09.001
- Kato T, Nakamura T, Yamashita M, Kawaguchi M, Kato T, Itoh T. 2003. Surfactant properties of purified polyglycerol monolaurates. J. Surfactants Deterg. 6: 331-337. https://doi.org/10.1007/s11743-003-0278-x
- Tan CP, Nakajima M. 2005. Effect of polyglycerol esters of fatty acids on physicochemical properties and stability of beta-carotene nanodispersions prepared by emulsification/evaporation method. J. Sci. Food Agr. 85: 121-126. https://doi.org/10.1002/jsfa.1947
- Shimazaki A, Sakamoto JJ, Furuta M, Tsuchido T. 2016. Antifungal activity of diglycerin ester of fatty acids against yeasts and its comparison with those of sucrose monopalmitate and sodium benzoate. Biocontrol. Sci. 21: 123-130. https://doi.org/10.4265/bio.21.123
- Ikegawa C, Ogita A, Doi T, Kumazawa F, Fujita KI, Tanaka T. 2017. Involvement of irreversible vacuolar membrane fragmentation in the lethality of food emulsifier diglycerol monolaurate against budding teast. J. Agric. Food Chem. 65: 5650-5656. https://doi.org/10.1021/acs.jafc.7b01580
- Zhang S, Xiong J, Lou W, Ning Z, Zhang D, Yang J. 2019. Antimicrobial activity and action mechanism of triglycerol monolaurate on common foodborne pathogens. Food Control. 98: 113-119. https://doi.org/10.1016/j.foodcont.2018.11.017
- Kumar TN, Sastry YSR, Lakshminarayana G. 1989. Preparation and surfactant properties of diglycerol esters of fatty acids. J. Am. Oil Chem. Soc. 66: 153-157. https://doi.org/10.1007/BF02661807
- Wang WY, Liu CY, Zhang GJ, Yang F, Wang XY, Chen FL, et al. 2019. Green synthesis of decaglycerol laurates by lipase-catalyzed transesterification of methyl laurate with decaglycerol. J. Chem. Article ID 6342475
- Denecke P, Borner G, Allmen V. 1981. Method of preparing polyglycerol polyricinoleic fatty acid esters. UK Patent. 2: 232.
- Ortega-Requena S, Bodalo-Santoyo A, Bastida-Rodriguez J, Maximo-Martin MF, Montiel-Morte MC, Gomez-Gomez M. 2014. Optimized enzymatic synthesis of the food additive polyglycerol polyricinoleate (PGPR) using Novozym (R) 435 in a solvent free system. Biochem. Eng. J. 84: 91-97. https://doi.org/10.1016/j.bej.2014.01.003
- Wan FL, Teng YL, Wang Y, Li AJ, Zhang N. 2015. Optimization of oligoglycerol fatty acid esters preparation catalyzed by Lipozyme 435. Grasas Aceites. 66(3): e088. https://doi.org/10.3989/gya.1180142
- Conley AJ, Kabara JJ. 1973. Antimicrobial action of esters of polyhydric alcohols. Antimicrob. Agents. Chemother. 4: 501-506. https://doi.org/10.1128/AAC.4.5.501
- Holstborg J, Pedersen BV, Krog N, Olesen SK. 1999. Physical properties of diglycerol esters in relation to rheology and stability of protein-stabilised emulsions. Colloid Surface B. 12: 383-390. https://doi.org/10.1016/S0927-7765(98)00092-7
- Peng B, Xiong CY, Huang Y, Hu JN, Zhu XM, Deng ZY. 2018. Enzymatic synthesis of polyglycerol fatty acid esters and their application as emulsion stabilizers. J. Agric. Food Chem. 66: 8104-8113. https://doi.org/10.1021/acs.jafc.8b00222
- REN Chun-fang, ZHOU Li-guo, Dian-qing Y. 2007. The improvement of method determining hydroxyl value in polyglycerol. J. Qilu. Univ. Technol. (Natural Science Edition) 21: 54-55.
- Martins M, Klusczcovski AM, Scussel VM. 2014. In vitro activity of the Brazil nut (Bertholletia excelsa HBK) oil in aflatoxigenic strains of Aspergillus parasiticus. Eur. Food Res. Technol. 239: 687-693. https://doi.org/10.1007/s00217-014-2265-1
- Shao S, Cai J, Du X, Wang CG, Lin JG, Dai J. 2016. Biotransformation and detoxification of aflatoxin B-1 by extracellular extract of Cladosporium uredinicola. Food Sci. Biotechnol. 25: 1789-1794. https://doi.org/10.1007/s10068-016-0272-7
- Eom TK, Kong CS, Byun HG, Jung WK, Kim SK. 2010. Lipase catalytic synthesis of diacylglycerol from tuna oil and its anti-obesity effect in C57BL/6J mice. Process Biochem. 45: 738-743. https://doi.org/10.1016/j.procbio.2010.01.012
- Orfanakis A, Hatzakis E, Kanaki K, Pergantis SA, Rizos A, Dais P. 2013. Characterization of polyglycerol polyricinoleate formulations using NMR spectroscopy, mass spectrometry and dynamic light scattering. J. Am. Oil Chem. Soc. 90: 39-51. https://doi.org/10.1007/s11746-012-2137-4
- Wan FL, Teng YL, Zou L, Yang X, Chen Q, Li AJ, et al. 2016. Effect of addition of purified diglycerol linoleic acid esters on the crystallization behavior of diacylglycerol oils. J. Am. Oil Chem. Soc. 93: 1605-1614. https://doi.org/10.1007/s11746-016-2895-5
- Ma X, Yan RA, Yu SQ, Lu YY, Li Z, Lu HH. 2012. Enzymatic acylation of isoorientin and isovitexin from bamboo-leaf extracts with fatty acids and antiradical activity of the acylated derivatives. J. Agric. Food Chem. 60: 10844-10849. https://doi.org/10.1021/jf303595e
- Saladino F, Bordin K, Manyes L, Luciano FB, Manes J, Fernandez-Franzon M, et al. 2016. Reduction of the aflatoxins B-1, B-2, G(1) and G(2) in Italian piadina by isothiocyanates. Lwt-Food Sci. Technol. 70: 302-308. https://doi.org/10.1016/j.lwt.2016.03.006
- Saladino F, Manyes L, Luciano FB, Manes J, Fernandez-Franzon M, Meca G. 2016. Bioactive compounds from mustard flours for the control of patulin production in wheat tortillas. Lwt-Food Sci. Technol. 66: 101-107. https://doi.org/10.1016/j.lwt.2015.10.011
- Holmes RA, Boston RS, Payne GA. 2008. Diverse inhibitors of aflatoxin biosynthesis. Appl. Microbiol. Biotechnol. 78: 559-572. https://doi.org/10.1007/s00253-008-1362-0
Cited by
- Lauric Acid Is a Potent Biological Control Agent That Damages the Cell Membrane of Phytophthora sojae vol.12, 2021, https://doi.org/10.3389/fmicb.2021.666761