DOI QR코드

DOI QR Code

Surface-Displayed Porcine IFN-λ3 in Lactobacillus plantarum Inhibits Porcine Enteric Coronavirus Infection of Porcine Intestinal Epithelial Cells

  • Liu, Yong-Shi (College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University) ;
  • Liu, Qiong (College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University) ;
  • Jiang, Yan-Long (College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University) ;
  • Yang, Wen-Tao (College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University) ;
  • Huang, Hai-Bin (College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University) ;
  • Shi, Chun-Wei (College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University) ;
  • Yang, Gui-Lian (College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University) ;
  • Wang, Chun-Feng (College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University)
  • Received : 2019.09.23
  • Accepted : 2019.11.07
  • Published : 2020.04.28

Abstract

Interferon (IFN)-λ plays an essential role in mucosal cells which exhibit strong antiviral activity. Lactobacillus plantarum (L. plantarum) has substantial application potential in the food and medical industries because of its probiotic properties. Alphacoronaviruses, especially porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV), cause high morbidity and mortality in piglets resulting in economic loss. Co-infection by these two viruses is becoming increasingly frequent. Therefore, it is particularly important to develop a new drug to prevent diarrhea infected with mixed viruses in piglets. In this study, we first constructed an anchored expression vector with CWA (C-terminal cell wall anchor) on L. plantarum. Second, we constructed two recombinant L. plantarum strains that anchored IFN-λ3 via pgsA (N-terminal transmembrane anchor) and CWA. Third, we demonstrated that both recombinant strains possess strong antiviral effects against coronavirus infection in the intestinal porcine epithelial cell line J2 (IPEC-J2). However, recombinant L. plantarum with the CWA anchor exhibited a more powerful antiviral effect than recombinant L. plantarum with pgsA. Consistent with this finding, Lb.plantarum-pSIP-409-IFN-λ3-CWA enhanced the expression levels of IFN-stimulated genes (ISGs) (ISG15, OASL, and Mx1) in IPEC-J2 cells more than did recombinant Lb.plantarum-pSIP-409-pgsA'-IFN-λ3. Our study verifies that recombinant L. plantarum inhibits PEDV and TGEV infection in IPEC-J2 cells, which may offer great potential for use as a novel oral antiviral agent in therapeutic applications for combating porcine epidemic diarrhea and transmissible gastroenteritis. This study is the first to show that recombinant L. plantarum suppresses PEDV and TGEV infection of IPEC-J2 cells.

Keywords

References

  1. Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, et al. 2003. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 4: 69-77. https://doi.org/10.1038/ni875
  2. Lazear HM, Nice TJ, Diamond MS. 2015. Interferon-lambda: immune functions at barrier surfaces and beyond. Immunity 43: 15-28. https://doi.org/10.1016/j.immuni.2015.07.001
  3. Sang Y, Rowland RR, Blecha F. 2010. Molecular characterization and antiviral analyses of porcine type III interferons. J. Interferon Cytokine Res. 30: 801-807. https://doi.org/10.1089/jir.2010.0016
  4. Pott J, Mahlakoiv T, Mordstein M, Duerr CU, Michiels T, Stockinger S, et al. 2011. IFN-lambda determines the intestinal epithelial antiviral host defense. Proc. Natl. Acad. Sci. USA 108: 7944-7949. https://doi.org/10.1073/pnas.1100552108
  5. Wang D, Fang L, Xiao S. 2016. Porcine epidemic diarrhea in China. Virus Res. 226: 7-13. https://doi.org/10.1016/j.virusres.2016.05.026
  6. Zhang Q, Hu R, Tang X, Wu C, He Q, Zhao Z, et al. 2013. Occurrence and investigation of enteric viral infections in pigs with diarrhea in China. Arch. Virol. 158: 1631-1636. https://doi.org/10.1007/s00705-013-1659-x
  7. Zhao ZP, Yang Z, Lin WD, Wang WY, Yang J, Jin WJ, et al. 2016. The rate of co-infection for piglet diarrhea viruses in China and the genetic characterization of porcine epidemic diarrhea virus and porcine kobuvirus. Acta Virol. 60: 55-61. https://doi.org/10.4149/av_2016_01_55
  8. Al Kassaa I, Hober D, Hamze M, Chihib NE, Drider D. 2014. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob. Proteins 6: 177-185. https://doi.org/10.1007/s12602-014-9162-6
  9. Seo BJ, Rather IA, Kumar VJ, Choi UH, Moon MR, Lim JH, et al. 2012. Evaluation of Leuconostoc mesenteroides YML003 as a probiotic against low-pathogenic avian influenza (H9N2) virus in chickens. J. Appl. Microbiol. 113: 163-171. https://doi.org/10.1111/j.1365-2672.2012.05326.x
  10. Lakshmi B, Viswanath B, Sai Gopal DV. 2013. Probiotics as antiviral agents in shrimp aquaculture. J. Pathog. 2013: 424123. https://doi.org/10.1155/2013/424123
  11. Al Kassaa I, Hamze M, Hober D, Chihib NE, Drider D. 2014. Identification of vaginal lactobacilli with potential probiotic properties isolated from women in North Lebanon. Microb. Ecol. 67: 722-734. https://doi.org/10.1007/s00248-014-0384-7
  12. Wang Z, Chai W, Burwinkel M, Twardziok S, Wrede P, Palissa C, et al. 2013. Inhibitory influence of Enterococcus faecium on the propagation of swine influenza A virus in vitro. PLoS One 8: e53043. https://doi.org/10.1371/journal.pone.0053043
  13. Maragkoudakis PA, Chingwaru W, Gradisnik L, Tsakalidou E, Cencic A. 2010. Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection. Int. J. Food Microbiol. 141 Suppl 1: S91-97. https://doi.org/10.1016/j.ijfoodmicro.2009.12.024
  14. Cha MK, Lee DK, An HM, Lee SW, Shin SH, Kwon JH, et al. 2012. Antiviral activity of Bifidobacterium adolescentis SPM1005-A on human papillomavirus type 16. BMC Med. 10: 72. https://doi.org/10.1186/1741-7015-10-72
  15. Conti C, Malacrino C, Mastromarino P. 2009. Inhibition of herpes simplex virus type 2 by vaginal lactobacilli. J. Physiol. Pharmacol. 60 (Suppl 6): 19-26.
  16. Martin V, Maldonado A, Fernandez L, Rodriguez JM, Connor RI. 2010. Inhibition of human immunodeficiency virus type 1 by lactic acid bacteria from human breastmilk. Breastfeed. Med. 153-158.
  17. Arena MP, Capozzi V, Spano G, Fiocco D. 2017. The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms. Appl. Microbiol. Biotechnol. 101: 2641-2657. https://doi.org/10.1007/s00253-017-8182-z
  18. Sorvig E, Mathiesen G, Naterstad K, Eijsink VG, Axelsson L. 2005. High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology (Reading, England). 151: 2439-2449. https://doi.org/10.1099/mic.0.28084-0
  19. Dekie L, Toncheva V, Dubruel P, Schacht EH, Barrett L, Seymour LW. 2000. Poly-L-glutamic acid derivatives as vectors for gene therapy. J. Control. Release 65: 187-202. https://doi.org/10.1016/S0168-3659(99)00235-7
  20. Ashiuchi M, Nawa C, Kamei T, Song JJ, Hong SP, Sung MH, et al. 2001. Physiological and biochemical characteristics of poly gammaglutamate synthetase complex of Bacillus subtilis. Eur. J. Biochem. 268: 5321-5328. https://doi.org/10.1046/j.0014-2956.2001.02475.x
  21. Hofmann M, Wyler R. 1988. Propagation of the virus of porcine epidemic diarrhea in cell culture. J. Clin. Microbiol. 26: 2235-2239. https://doi.org/10.1128/jcm.26.11.2235-2239.1988
  22. Sun D, Shi H, Guo D, Chen J, Shi D, Zhu Q, et al. 2015. Analysis of protein expression changes of the Vero E6 cells infected with classic PEDV strain CV777 by using quantitative proteomic technique. J. Virol. Methods 218: 27-39. https://doi.org/10.1016/j.jviromet.2015.03.002
  23. Shi SH, Yang WT, Yang GL, Cong YL, Huang HB, Wang Q, et al. 2014. Immunoprotection against influenza virus H9N2 by the oral administration of recombinant Lactobacillus plantarum NC8 expressing hemagglutinin in BALB/c mice. Virology 464-465: 166-176. https://doi.org/10.1016/j.virol.2014.07.011
  24. Huang KY, Yang GL, Jin YB, Liu J, Chen HL, Wang PB, et al. 2018. Construction and immunogenicity analysis of Lactobacillus plantarum expressing a porcine epidemic diarrhea virus S gene fused to a DC-targeting peptide. Virus Res. 247: 84-93. https://doi.org/10.1016/j.virusres.2017.12.011
  25. Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3: 1101-1108. https://doi.org/10.1038/nprot.2008.73
  26. Thirabunyanon M, Hongwittayakorn P. 2013. Potential probiotic lactic acid bacteria of human origin induce antiproliferation of colon cancer cells via synergic actions in adhesion to cancer cells and short-chain fatty acid bioproduction. Appl. Biochem. Biotechnol. 169: 511-525. https://doi.org/10.1007/s12010-012-9995-y
  27. Diaz MO, Ziemin S, Le Beau MM, Pitha P, Smith SD, Chilcote RR, et al. 1988. Homozygous deletion of the alphaand beta 1-interferon genes in human leukemia and derived cell lines. Proc. Natl. Acad. Sci. USA 85: 5259-5263. https://doi.org/10.1073/pnas.85.14.5259
  28. Li L , Fu F , Xue M, Chen W, L iu J , Shi H, et al. 2 017. I FNlambda preferably inhibits PEDV infection of porcine intestinal epithelial cells compared with IFN-alpha. Antiviral Res. 140: 76-82. https://doi.org/10.1016/j.antiviral.2017.01.012
  29. Arena MP, Elmastour F, Sane F, Drider D, Fiocco D, Spano G, et al. 2018. Inhibition of coxsackievirus B4 by Lactobacillus plantarum. Microbiol. Res. 210: 59-64. https://doi.org/10.1016/j.micres.2018.03.008
  30. Zhang X, Li P, Zheng Q, Hou J. 2019. Lactobacillus acidophilus S-layer protein-mediated inhibition of PEDVinduced apoptosis of Vero cells. Vet. Microbiol. 229: 159-167. https://doi.org/10.1016/j.vetmic.2019.01.003
  31. Kochs G, Haller O. 1999. Interferon-induced human MxA GTPase blocks nuclear import of Thogoto virus nucleocapsids. Proc. Natl. Acad. Sci. USA 96: 2082-2086. https://doi.org/10.1073/pnas.96.5.2082
  32. Lenschow DJ, Lai C, Frias-Staheli N, Giannakopoulos NV, Lutz A, Wolff T, et al. 2007. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl. Acad. Sci. USA 104: 1371-1376. https://doi.org/10.1073/pnas.0607038104
  33. Melchjorsen J, Kristiansen H, Christiansen R, Rintahaka J, Matikainen S, Paludan SR, et al. 2009. Differential regulation of the OASL and OAS1 genes in response to viral infections. J. Interferon Cytokine Res. 29: 199-207. https://doi.org/10.1089/jir.2008.0050
  34. Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, et al. 2009. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139: 1243-1254. https://doi.org/10.1016/j.cell.2009.12.017
  35. Diamond MS, Farzan M. 2013. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 13: 46-57. https://doi.org/10.1038/nri3344
  36. Wells JM, Mercenier A. 2008. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat. Rev. Microbiol. 6: 349-362. https://doi.org/10.1038/nrmicro1840
  37. Bermudez-Humaran LG, Cortes-Perez NG, Le Loir Y, Alcocer-Gonzalez JM, Tamez-Guerra RS, de Oca-Luna RM, et al. 2004. An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. J. Med. Microbiol. 53: 427-433. https://doi.org/10.1099/jmm.0.05472-0
  38. Michon C, Langella P, Eijsink VG, Mathiesen G, Chatel JM. 2016. Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications. Microb. Cell Fact. 15: 70. https://doi.org/10.1186/s12934-016-0468-9
  39. Ma SJ, Li K, Li XS, Guo XQ, Fu PF, Yang MF, et al. 2014. Expression of bioactive porcine interferon-alpha in Lactobacillus casei. World J. Microbiol. Biotechnol. 30: 2379-2386. https://doi.org/10.1007/s11274-014-1663-7
  40. Masters PS. 2006. The molecular biology of coronaviruses. Adv. Virus Res. 66: 193-292. https://doi.org/10.1016/S0065-3527(06)66005-3
  41. Enjuanes L, Smerdou C, Castilla J, Anton IM, Torres JM, Sola I, et al. 1995. Development of protection against coronavirus induced diseases. A review. Adv. Exp. Med. Biol. 380: 197-211. https://doi.org/10.1007/978-1-4615-1899-0_34
  42. Mullan BP, Davies GT, Cutler RS. 1994. Simulation of the economic impact of transmissible gastroenteritis on commercial pig production in Australia. Aust. Vet. J. 71: 151-154. https://doi.org/10.1111/j.1751-0813.1994.tb03370.x
  43. Nice TJ, Baldridge MT, McCune BT, Norman JM, Lazear HM, Artyomov M, et al. 2015. Interferon-lambda cures persistent murine norovirus infection in the absence of adaptive immunity. Science 347: 269-273. https://doi.org/10.1126/science.1258100

Cited by

  1. Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic vol.8, 2020, https://doi.org/10.3389/fpubh.2020.00186
  2. Lacticaseibacillus paracasei DG enhances the lactoferrin anti-SARS-CoV-2 response in Caco-2 cells vol.13, pp.1, 2020, https://doi.org/10.1080/19490976.2021.1961970
  3. Microbiota Modulation of the Gut-Lung Axis in COVID-19 vol.12, 2021, https://doi.org/10.3389/fimmu.2021.635471
  4. Gut-Lung Axis in COVID-19 vol.2021, 2020, https://doi.org/10.1155/2021/6655380
  5. Lactiplantibacillus plantarum as a Potential Adjuvant and Delivery System for the Development of SARS-CoV-2 Oral Vaccines vol.9, pp.4, 2021, https://doi.org/10.3390/microorganisms9040683
  6. Gut Dysbiosis during COVID-19 and Potential Effect of Probiotics vol.9, pp.8, 2020, https://doi.org/10.3390/microorganisms9081605
  7. Immunonutrition effects on coping with COVID-19 vol.12, pp.17, 2020, https://doi.org/10.1039/d1fo01278a