References
- Kaden R, Ferrari S, Jinnerot T, Lindberg M, Wahab T, Lavander M. 2018. Brucella abortus: determination of survival times and evaluation of methods for detection in several matrices. BMC Infect. Dis. 18: 259. https://doi.org/10.1186/s12879-018-3134-5
- Khan MZ, Zahoor M. 2018. An overview of brucellosis in cattle and humans, and its serological and molecular diagnosis in control strategies. Trop. Med. Infect. Dis. 3: 65. https://doi.org/10.3390/tropicalmed3020065
- Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzman-Verri C, Chacon-Diaz C, Rucavado A, et al. 2007. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One 2: e631. https://doi.org/10.1371/journal.pone.0000631
- Meng F, Pan X, Tong W. 2018. Rifampin versus streptomycin for brucellosis treatment in humans: a meta-analysis of randomized controlled trials. PLoS One 13: e0191993. https://doi.org/10.1371/journal.pone.0191993
- Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. 2018. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 11: 1645-1658. https://doi.org/10.2147/IDR.S173867
- Nath R, Das S, Sarma S, Devi M. 2014. Comparison of blood profiles between healthy and Brucella affected cattle. Vet. World. 7: 668-670. https://doi.org/10.14202/vetworld.2014.668-670
- Ali AH. 2009. The effect of brucellosis on lipid profile and oxidant-antioxidants status. Iraqi. J. Pharm. Sci. 18: 26-31.
- Lin CJ, Lai CK, Kao MC, Wu LT, Lo UG, Lin LC, et al. 2015. Impact of cholesterol on disease progression. Biomedicine (Taipei) 5: 7. https://doi.org/10.7603/s40681-015-0007-8
- Paniagua-Perez R, Madrigal-Bujaidar E, Reyes-Cadena S, Molina-Jasso D, Perez Gallaga J, Silva-Miranda A, et al. 2005. Genotoxic and cytotoxic studies of beta-sitosterol and pteropodine in mouse. J. Biomed. Biotechnol. 2005: 242-247. https://doi.org/10.1155/JBB.2005.242
-
Ododo MM, Choudhury MK, Dekebo AH. 2016. Structure elucidation of
${\beta}$ -sitosterol with antibacterial activity from the root bark of Malva parviflora. Springerplus 5: 12210. - Reyes AWB, Hop HT, Arayan LT, Huy TXN, Park SJ, Kim KD, et al. 2017. The host immune enhancing agent Korean red ginseng oil successfully attenuates Brucella abortus infection in a murine model. J. Ethnopharmacol. 198: 5-14. https://doi.org/10.1016/j.jep.2016.12.026
-
Hop HT, Reyes AWB, Huy TXN, Arayan LT, Min WG, Lee HJ, et al. 2017. Activation of
$NF-{\kappa}B$ -mediated TNF-induced antimicrobial immunity is required for the efficient Brucella abortus clearance in RAW264.7 cells. Front. Cell. Infect. Microbiol. 7: 437. https://doi.org/10.3389/fcimb.2017.00437 - Cargnello M, Roux PP. 2011. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75: 50-83. https://doi.org/10.1128/MMBR.00031-10
- Grillo MJ, Blasco JM, Gorvel JP, Moriyon I, Moreno E. 2012. What have we learned from brucellosis in the mouse model. Vet. Res. 43: 29. https://doi.org/10.1186/1297-9716-43-29
- Wang Y, Li Y, Li H, Song H, Zhai N, Lou L, et al. 2017. Brucella dysregulates monocytes and inhibits macrophage polarization through LC3-dependent autophagy. Front. Immunol. 8: 691. https://doi.org/10.3389/fimmu.2017.00691
- Celli J. 2006. Surviving inside a macrophage: the many ways of Brucella. Res. Microbiol. 157: 93-98. https://doi.org/10.1016/j.resmic.2005.10.002
- von Bargen K, Gorvel JP, Salcedo SP. 2012. Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol. Rev. 36: 533-562. https://doi.org/10.1111/j.1574-6976.2012.00334.x
- Boukes GJ, Van de Venter M. 2016. In vitro modulation of the innate immune response and phagocytosis by three Hypoxis spp. and their phytosterol. S. Afr. J. Bot. 102: 120-126. https://doi.org/10.1016/j.sajb.2015.05.033
- Wang M, Qureshi N, Soeurt N, Splitter G. 2001. High level of nitric oxide production decrease early but increase late survival of Brucella abortus in macrophages. Microb. Pathog. 31: 221-230. https://doi.org/10.1006/mpat.2001.0463
- Barquero-Calvo E, Mora-Cartin R, Arce-Gorvel V, de Diego JL, Chacon-Diaz C, Chaves-Olarte E, et al. Brucella induces the premature death of human neutrophils through the actin of its lipopolysaccharide. PLoS Pathog. 11: e1004853.
- Gruenheid S, Finlay BB. 2003. Microbial pathogenesis and cytoskeletal function. Nature 422: 775-781. https://doi.org/10.1038/nature01603
-
Loizou S, Lekakis I, Chrousos GP, Moutsatsou P. 2010.
${\beta}$ - sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol. Nutr. Food Res. 54: 551-558. https://doi.org/10.1002/mnfr.200900012 - Fahy DM, O'Callaghan YC, O'Brien NM. 2004. Phytosterols: lack of cytotoxicity but interference with beta-carotene uptake in Caco-2 cellls in culture. Food Addit. Contam. 21: 42-51. https://doi.org/10.1080/02652030310001636921
-
Sharmila R, Sindhu G. 2017. Evaluate the antigenotoxicity and anticancer role of
${\beta}$ -sitosterol by determining oxidative DNA damage and the expression of phosphorylated mitogen-activated protein kinases', c-fos, c-jun, and endothelial growth factor receptor. Pharmacogn. Mag. 13: 95-101. https://doi.org/10.4103/0973-1296.203975 - Tripathi P, Tripathi P, Kashyap L, Singh V. 2007. The role of nitric oxide in inflammatory reactions. FEMS Immunol. Med. Microbiol. 51: 443-452. https://doi.org/10.1111/j.1574-695X.2007.00329.x
-
Lampronti I, Dechecchi MC, Rimessi A, Bezzerri V, Nicolis E, Guerrini A, et al. 2017.
${\beta}$ -sitosterol reduces the expression of chemotactic cytokine genes in cystic fibrosis bronchial epithelial cells. Front. Pharmacol. 8: 236. https://doi.org/10.3389/fphar.2017.00236 -
Li H, Zhao X, Wang J, Dong Y, Meng S, Li R, et al. 2015.
${\beta}$ -sitosterol interacts with pneumolysin to prevent Streptococcus pneumonia infection. Sci. Rep. 5: 17668. https://doi.org/10.1038/srep17668 - Iyer SS, Cheng G. 2012. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 32: 23-63. https://doi.org/10.1615/CritRevImmunol.v32.i1.30
-
Han NR, Kim HM, Jeong HJ. 2014. The
${\beta}$ -sitosterol attenuates atopic dermatitis-like skin lesions through down-regulation of TSLP. Expt. Biol. Med. (Maywood) 239: 454-464. https://doi.org/10.1177/1535370213520111 -
Kim SJ. 2017. The ameliorative effect of
${\beta}$ -sitosterol on DNCB-induced atopic dermatitis in mice. Biomed. Sci. Lett. 23: 303-309. https://doi.org/10.15616/BSL.2017.23.4.303 - Zhan Y, Cheers C. 1993. Endogenous gamma interferon mediates resistance to Brucella abortus infection. Infect. Immun. 61: 4899-4901. https://doi.org/10.1128/iai.61.11.4899-4901.1993
- Macedo GC, Magnani DM, Carvalho NB, Bruna-Romero O, Gazzinelli RT, Oliveira SC. 2008. Central role of MyD88-dependent dendritic cell maturation and proinflammatory cytokine production to control Brucella abortus infection. J. Immunol. 180: 1080-1087. https://doi.org/10.4049/jimmunol.180.2.1080
-
Guler R, Parihar SP, Spohn G, Johansen P, Brombacher F, Bachmann MF. 2011. Blocking IL-
$1{\alpha}$ but not IL-$1{\beta}$ increases susceptibility to chronic Mycobacterium tuberculosis infection in mice. Vaccine 29: 1339-1346. https://doi.org/10.1016/j.vaccine.2010.10.045 - Skendros P, Boura P. 2013. Immunity to brucellosis. Rev. Sci. Tech. 32: 137-147. https://doi.org/10.20506/rst.32.1.2190
- Corsetti PP, de Almeida LA, Carvalho NB, Azevedo V, Silva TMA, Teixeira HC, et al. 2013. Lack of endogenous IL-10 enhances production of proinflammatory cytokines and leads to Brucella abortus clearance in mice. PLoS One 8: e74729. https://doi.org/10.1371/journal.pone.0074729
- Picka MCM, Calvi SA, Lima CRG, Santos IAT, Marcondes-Machado J. 2005. Measurement of IL-10 serum levels in BALB/c mice treated with beta-1,3 polyglucose or sulfadiazine and acutely infected by Toxoplasma gondii. J. Venom. Anim. Toxins Incl. Trop. Dis. 11: 542.