DOI QR코드

DOI QR Code

β-Sitosterol Contributes in the Resistance to Invasion and Survival of Brucella abortus 544 within RAW264.7 Cells, and Cytokine Production with Reduced Susceptibility to Infection in BALB/c Mice

  • Reyes, Alisha Wehdnesday Bernardo (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Arayan, Lauren Togonon (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Huy, Tran Xuan Ngoc (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Vu, Son Hai (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Min, Wongi (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Hur, Jin (Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, Suk (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University)
  • Received : 2019.09.30
  • Accepted : 2019.12.24
  • Published : 2020.04.28

Abstract

We previously identified β-sitosterol (BS) as one of the most abundant compounds found in Korean red ginseng oil. BS is a widely prevalent vegetable-derived phytosterol with many known health benefits. Here, we investigated the efficacy of BS against Brucella (B.) abortus infection. BS showed no effect on bacterial growth but attenuated internalization, intracellular survival and MAPKs-linked intracellular signaling in RAW264.7 cells. BS treatment in cells is also associated with increased nitrite concentration during infection at 24 h. Slightly enhanced resistance to B. abortus infection was observed in mice orally given BS, which could be mediated by induced production of proinflammatory cytokines. Taken together, our study demonstrates the contribution of BS treatment against B. abortus infection although further investigation is encouraged to maximize its beneficial effects against intracellular infection.

Keywords

References

  1. Kaden R, Ferrari S, Jinnerot T, Lindberg M, Wahab T, Lavander M. 2018. Brucella abortus: determination of survival times and evaluation of methods for detection in several matrices. BMC Infect. Dis. 18: 259. https://doi.org/10.1186/s12879-018-3134-5
  2. Khan MZ, Zahoor M. 2018. An overview of brucellosis in cattle and humans, and its serological and molecular diagnosis in control strategies. Trop. Med. Infect. Dis. 3: 65. https://doi.org/10.3390/tropicalmed3020065
  3. Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzman-Verri C, Chacon-Diaz C, Rucavado A, et al. 2007. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One 2: e631. https://doi.org/10.1371/journal.pone.0000631
  4. Meng F, Pan X, Tong W. 2018. Rifampin versus streptomycin for brucellosis treatment in humans: a meta-analysis of randomized controlled trials. PLoS One 13: e0191993. https://doi.org/10.1371/journal.pone.0191993
  5. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. 2018. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 11: 1645-1658. https://doi.org/10.2147/IDR.S173867
  6. Nath R, Das S, Sarma S, Devi M. 2014. Comparison of blood profiles between healthy and Brucella affected cattle. Vet. World. 7: 668-670. https://doi.org/10.14202/vetworld.2014.668-670
  7. Ali AH. 2009. The effect of brucellosis on lipid profile and oxidant-antioxidants status. Iraqi. J. Pharm. Sci. 18: 26-31.
  8. Lin CJ, Lai CK, Kao MC, Wu LT, Lo UG, Lin LC, et al. 2015. Impact of cholesterol on disease progression. Biomedicine (Taipei) 5: 7. https://doi.org/10.7603/s40681-015-0007-8
  9. Paniagua-Perez R, Madrigal-Bujaidar E, Reyes-Cadena S, Molina-Jasso D, Perez Gallaga J, Silva-Miranda A, et al. 2005. Genotoxic and cytotoxic studies of beta-sitosterol and pteropodine in mouse. J. Biomed. Biotechnol. 2005: 242-247. https://doi.org/10.1155/JBB.2005.242
  10. Ododo MM, Choudhury MK, Dekebo AH. 2016. Structure elucidation of ${\beta}$-sitosterol with antibacterial activity from the root bark of Malva parviflora. Springerplus 5: 12210.
  11. Reyes AWB, Hop HT, Arayan LT, Huy TXN, Park SJ, Kim KD, et al. 2017. The host immune enhancing agent Korean red ginseng oil successfully attenuates Brucella abortus infection in a murine model. J. Ethnopharmacol. 198: 5-14. https://doi.org/10.1016/j.jep.2016.12.026
  12. Hop HT, Reyes AWB, Huy TXN, Arayan LT, Min WG, Lee HJ, et al. 2017. Activation of $NF-{\kappa}B$-mediated TNF-induced antimicrobial immunity is required for the efficient Brucella abortus clearance in RAW264.7 cells. Front. Cell. Infect. Microbiol. 7: 437. https://doi.org/10.3389/fcimb.2017.00437
  13. Cargnello M, Roux PP. 2011. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75: 50-83. https://doi.org/10.1128/MMBR.00031-10
  14. Grillo MJ, Blasco JM, Gorvel JP, Moriyon I, Moreno E. 2012. What have we learned from brucellosis in the mouse model. Vet. Res. 43: 29. https://doi.org/10.1186/1297-9716-43-29
  15. Wang Y, Li Y, Li H, Song H, Zhai N, Lou L, et al. 2017. Brucella dysregulates monocytes and inhibits macrophage polarization through LC3-dependent autophagy. Front. Immunol. 8: 691. https://doi.org/10.3389/fimmu.2017.00691
  16. Celli J. 2006. Surviving inside a macrophage: the many ways of Brucella. Res. Microbiol. 157: 93-98. https://doi.org/10.1016/j.resmic.2005.10.002
  17. von Bargen K, Gorvel JP, Salcedo SP. 2012. Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol. Rev. 36: 533-562. https://doi.org/10.1111/j.1574-6976.2012.00334.x
  18. Boukes GJ, Van de Venter M. 2016. In vitro modulation of the innate immune response and phagocytosis by three Hypoxis spp. and their phytosterol. S. Afr. J. Bot. 102: 120-126. https://doi.org/10.1016/j.sajb.2015.05.033
  19. Wang M, Qureshi N, Soeurt N, Splitter G. 2001. High level of nitric oxide production decrease early but increase late survival of Brucella abortus in macrophages. Microb. Pathog. 31: 221-230. https://doi.org/10.1006/mpat.2001.0463
  20. Barquero-Calvo E, Mora-Cartin R, Arce-Gorvel V, de Diego JL, Chacon-Diaz C, Chaves-Olarte E, et al. Brucella induces the premature death of human neutrophils through the actin of its lipopolysaccharide. PLoS Pathog. 11: e1004853.
  21. Gruenheid S, Finlay BB. 2003. Microbial pathogenesis and cytoskeletal function. Nature 422: 775-781. https://doi.org/10.1038/nature01603
  22. Loizou S, Lekakis I, Chrousos GP, Moutsatsou P. 2010. ${\beta}$- sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol. Nutr. Food Res. 54: 551-558. https://doi.org/10.1002/mnfr.200900012
  23. Fahy DM, O'Callaghan YC, O'Brien NM. 2004. Phytosterols: lack of cytotoxicity but interference with beta-carotene uptake in Caco-2 cellls in culture. Food Addit. Contam. 21: 42-51. https://doi.org/10.1080/02652030310001636921
  24. Sharmila R, Sindhu G. 2017. Evaluate the antigenotoxicity and anticancer role of ${\beta}$-sitosterol by determining oxidative DNA damage and the expression of phosphorylated mitogen-activated protein kinases', c-fos, c-jun, and endothelial growth factor receptor. Pharmacogn. Mag. 13: 95-101. https://doi.org/10.4103/0973-1296.203975
  25. Tripathi P, Tripathi P, Kashyap L, Singh V. 2007. The role of nitric oxide in inflammatory reactions. FEMS Immunol. Med. Microbiol. 51: 443-452. https://doi.org/10.1111/j.1574-695X.2007.00329.x
  26. Lampronti I, Dechecchi MC, Rimessi A, Bezzerri V, Nicolis E, Guerrini A, et al. 2017. ${\beta}$-sitosterol reduces the expression of chemotactic cytokine genes in cystic fibrosis bronchial epithelial cells. Front. Pharmacol. 8: 236. https://doi.org/10.3389/fphar.2017.00236
  27. Li H, Zhao X, Wang J, Dong Y, Meng S, Li R, et al. 2015. ${\beta}$-sitosterol interacts with pneumolysin to prevent Streptococcus pneumonia infection. Sci. Rep. 5: 17668. https://doi.org/10.1038/srep17668
  28. Iyer SS, Cheng G. 2012. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 32: 23-63. https://doi.org/10.1615/CritRevImmunol.v32.i1.30
  29. Han NR, Kim HM, Jeong HJ. 2014. The ${\beta}$-sitosterol attenuates atopic dermatitis-like skin lesions through down-regulation of TSLP. Expt. Biol. Med. (Maywood) 239: 454-464. https://doi.org/10.1177/1535370213520111
  30. Kim SJ. 2017. The ameliorative effect of ${\beta}$-sitosterol on DNCB-induced atopic dermatitis in mice. Biomed. Sci. Lett. 23: 303-309. https://doi.org/10.15616/BSL.2017.23.4.303
  31. Zhan Y, Cheers C. 1993. Endogenous gamma interferon mediates resistance to Brucella abortus infection. Infect. Immun. 61: 4899-4901. https://doi.org/10.1128/iai.61.11.4899-4901.1993
  32. Macedo GC, Magnani DM, Carvalho NB, Bruna-Romero O, Gazzinelli RT, Oliveira SC. 2008. Central role of MyD88-dependent dendritic cell maturation and proinflammatory cytokine production to control Brucella abortus infection. J. Immunol. 180: 1080-1087. https://doi.org/10.4049/jimmunol.180.2.1080
  33. Guler R, Parihar SP, Spohn G, Johansen P, Brombacher F, Bachmann MF. 2011. Blocking IL-$1{\alpha}$ but not IL-$1{\beta}$ increases susceptibility to chronic Mycobacterium tuberculosis infection in mice. Vaccine 29: 1339-1346. https://doi.org/10.1016/j.vaccine.2010.10.045
  34. Skendros P, Boura P. 2013. Immunity to brucellosis. Rev. Sci. Tech. 32: 137-147. https://doi.org/10.20506/rst.32.1.2190
  35. Corsetti PP, de Almeida LA, Carvalho NB, Azevedo V, Silva TMA, Teixeira HC, et al. 2013. Lack of endogenous IL-10 enhances production of proinflammatory cytokines and leads to Brucella abortus clearance in mice. PLoS One 8: e74729. https://doi.org/10.1371/journal.pone.0074729
  36. Picka MCM, Calvi SA, Lima CRG, Santos IAT, Marcondes-Machado J. 2005. Measurement of IL-10 serum levels in BALB/c mice treated with beta-1,3 polyglucose or sulfadiazine and acutely infected by Toxoplasma gondii. J. Venom. Anim. Toxins Incl. Trop. Dis. 11: 542.