DOI QR코드

DOI QR Code

The protective effects of polyphenol-rich black chokeberry against oxidative stress and inflammation

폴리페놀 함유 블랙 초크베리의 산화적 스트레스 및 염증에 대한 보호 효과

  • Jeon, Sohyeon (Department of Food Science and Nutrition, Pusan National University) ;
  • Kim, Bohkyung (Department of Food Science and Nutrition, Pusan National University)
  • 전소현 (부산대학교 식품영양학과) ;
  • 김보경 (부산대학교 식품영양학과)
  • Received : 2020.02.11
  • Accepted : 2020.02.26
  • Published : 2020.04.30

Abstract

Black chokeberry (Aronia melanocarpa) has been suggested to exert antioxidant and anti-inflammatory effects due to its high polyphenol content. However, the mechanisms underlying the effects of black chokeberry on the alterations of nuclear factor E2-related factor 2 (NRF2) and nuclear factor κB (NF-κB) in macrophages have not been thoroughly studied. In this study, we investigated the protective effects of polyphenol-rich black chokeberry extract (CBE) against lipopolysaccharide (LPS)-induced oxidative stress and inflammation in RAW 264.7 macrophages. CBE significantly attenuated the increase of cellular reactive oxygen species (ROS) levels and the nuclear translocation of NRF-2 in LPS-stimulated macrophages. The mRNA abundances of Nrf2 and its downstream antioxidant genes were significantly decreased in LPS-stimulated macrophages. The LPS-induced mRNA expression of proinflammatory cytokines was significantly inhibited by reducing the nuclear translocation of NF-κB by CBE. These data suggest that black chokeberry may be used for the prevention of oxidative stress and inflammation-associated disease.

본 연구에서는 다양한 만성 대사성 질환에 기초적 유발 기전인 산화적 스트레스 및 염증에 대한 폴리페놀 함유 블랙 초크베리의 보호 효과를 살펴보았다. 블랙 초크베리는 DPPH, ·OH, 및 NO 등 다양한 라디컬 소거능을 나타냈다. 내독소인 LPS에 의해 활성화된 대식세포 내 ROS 증가는 폴리페놀 함유 블랙 초크베리에 의해 감소하였다. 이는 블랙 초크베리가 전사인자인 NRF2의 핵 내 이동 및 이로 인해 조절되는 SOD에 의한 ROS 소거능 및 NOX2에 의한 ROS 생성 저하에 의한 것으로 나타났다. 블랙 초크베리의 염증 보호 효과는 활성화된 대식세포에서 증가하는 NF-κB의 핵 내 이동에 따른 COX-2, iNOS와 같은 염증 매개인자 관련 효소와 TNF-α, IL-6, IL-1β와 같은 염증성 사이토카인의 저하에 의한 것으로 나타났다. 결론적으로 블랙 초크베리의 산화적 스트레스 및 염증 보호 효과는 항산화 효소 관련 전사 인자인 NRF2 조절 기전 및 염증 관련 전사 인자인 NF-κB와 관련 유전자 발현의 조절을 통하여 나타났다. 추후 블랙 초크베리 내 기능성 물질에 대한 심도 있는 기전 연구를 통해 천연물 유래 기능성 소재로서의 역할을 할 것으로 판단된다.

Keywords

References

  1. Appel K, Meiser P, Millan E, Collado JA, Rose T, Gras CC, Carle R, Munoz E. Chokeberry (Aronia melanocarpa (Michx.) Elliot) concentrate inhibits NF-kappaB and synergizes with selenium to inhibit the release of pro-inflammatory mediators in macrophages. Fitoterapia. 105: 73-82 (2015) https://doi.org/10.1016/j.fitote.2015.06.009
  2. Brown KL, Cosseau C, Gardy JL, Hancock RE. Complexities of targeting innate immunity to treat infection. Trends Immunol. 28: 260-266 (2007) https://doi.org/10.1016/j.it.2007.04.005
  3. Campos G, Schmidt-Heck W, De Smedt J, Widera A, Ghallab A, Putter L, Gonzalez D, Edlund K, Cadenas C, Marchan R, Guthke R, Verfaillie C, Hetz C, Sachinidis A, Braeuning A, Schwarz M, Weiss TS, Banhart BK, Hoek J, Vadigepalli R, Willy J, Stevens JL, Hay DC, Hengstler JG, Godoy P. Inflammation-associated suppression of metabolic gene networks in acute and chronic liver disease. Arch. Toxicol. 94: 205-217 (2020) https://doi.org/10.1007/s00204-019-02630-3
  4. Castrillo A, Tontonoz P. Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu. Rev. Cell Dev. Biol. 20: 455-480 (2004) https://doi.org/10.1146/annurev.cellbio.20.012103.134432
  5. Chawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol. 11: 738-749 (2011) https://doi.org/10.1038/nri3071
  6. Ciocoiu M, Badescu L, Miron A, Badescu M. The involvement of a polyphenol-rich extract of black chokeberry in oxidative stress on experimental arterial hypertension. Evid. Based Complement Alternat. Med. 201: 912769 (2013)
  7. Czapski GA, Cakala M, Chalimoniuk M, Gajkowska B, Strosznajder JB. Role of nitric oxide in the brain during lipopolysaccharideevoked systemic inflammation. J. Neurosci. Res. 85: 1694-1703 (2007) https://doi.org/10.1002/jnr.21294
  8. Deleuran BW. NSAID--COX-2-inhibitors, where is the difference? Focus on the modes of action. Ugeskr Laeger. 163: 4185-4189 (2001)
  9. Ding L, Yuan X, Yan J, Huang Y, Xu M, Yang Z, Yang N, Wang M, Zhang C, Zhang L. Nrf2 exerts mixed inflammation and glucose metabolism regulatory effects on murine RAW 264.7 macrophages. Int. Immunopharmacol. 71: 198-204 (2019) https://doi.org/10.1016/j.intimp.2019.03.023
  10. Diplock AT. Defense against reactive oxygen species. Free Radic. Res. 29: 463-467 (1998) https://doi.org/10.1080/10715769800300521
  11. Dolan S, Field LC, Nolan AM. The role of nitric oxide and prostaglandin signaling pathways in spinal nociceptive processing in chronic inflammation. Pain. 86: 311-320 (2000) https://doi.org/10.1016/S0304-3959(00)00262-1
  12. Giudice A, Arra C, Turco MC. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Methods Mol. Biol. 647: 37-74 (2010) https://doi.org/10.1007/978-1-60761-738-9_3
  13. Gonzalez-Molina E, Moreno DA, Garcia-Viguera C. Aronia-enriched lemon juice: a new highly antioxidant beverage. J. Agric. Food Chem. 56: 11327-11333 (2008) https://doi.org/10.1021/jf802790h
  14. Guarnieri G, Grassi G, Barazzoni R, Zanetti M, Biolo G. The impact of inflammation on metabolic regulation in chronic kidney disease: a review. J. Ren. Nutr. 15: 121-124 (2005) https://doi.org/10.1053/j.jrn.2004.09.016
  15. Holvoet P. Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease. Verh. K. Acad. Geneeskd. Belg. 70: 193-219 (2008)
  16. Hwang SJ, Yoon WB, Lee OH, Cha SJ, Kim JD. Radical-scavenging-linked antioxidant activities of extracts from black chokeberry and blueberry cultivated in Korea. Food Chem. 146: 71-77 (2014) https://doi.org/10.1016/j.foodchem.2013.09.035
  17. Inoue H, Tanabe T. Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene in vascular endothelial cells. Adv. Exp. Med. Biol. 407: 139-144 (1997) https://doi.org/10.1007/978-1-4899-1813-0_21
  18. Iwashima T, Kudome Y, Kishimoto Y, Saita E, Tanaka M, Taguchi C, Hirakawa S, Mitani M, Kondo K, Iida K. Aronia berry extract inhibits TNF-${\alpha}$-induced vascular endothelial inflammation through the regulation of STAT3. Food Nutr. Res. 63: 3361(2019)
  19. Jurikova T, Mlcek J, Skrovankova S, Sumczynski D, Sochor J, Hlavacova I, Snopek L, Orsavova J. Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules, 22: 944 (2017) https://doi.org/10.3390/molecules22060944
  20. Karunakaran U, Park KG. A systematic review of oxidative stress and safety of antioxidants in diabetes: focus on islets and their defense. Diabetes Metab. J. 37: 106-112 (2013) https://doi.org/10.4093/dmj.2013.37.2.106
  21. Kovac S, Angelova PR, Holmstrom KM, Zhang Y, Dinkova-Kostova AT, Abramov AY. Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim. Biophys. Acta. 1850: 794-801 (2015) https://doi.org/10.1016/j.bbagen.2014.11.021
  22. Lakshman TR, Deb J, Paine TK. Anti-inflammatory activity and enhanced COX-2 selectivity of nitric oxide-donating zinc (ii)-NSAID complexes. Dalton Trans. 45: 14053-14057 (2016) https://doi.org/10.1039/C6DT00838K
  23. Laskin JD, Heck DE, Laskin DL. Multifunctional role of nitric oxide in inflammation. Trends Endocrinol. Metab. 5: 377-382 (1994) https://doi.org/10.1016/1043-2760(94)90105-8
  24. Lopez-Candales A, Hernandez Burgos PM, Hernandez-Suarez DF, Harris D. Linking chronic inflammation with cardiovascular disease: from normal aging to the metabolic syndrome. J. Nat. Sci, 3: 1-22 (2017)
  25. Maiese K. Paring down obesity and metabolic disease by targeting inflammation and oxidative stress. Curr. Neurovasc. Res. 12: 107-108 (2015) https://doi.org/10.2174/1567202612666150311101551
  26. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6: 3051-3064 (1992) https://doi.org/10.1096/fasebj.6.12.1381691
  27. Paulrayer A, Adithan A, Lee JH, Moon KH, Kim DG, Im SY, Kang CW, Kim NS, Kim JH. Aronia Melanocarpa (Black Chokeberry) Reduces ethanol-induced gastric damage via regulation of HSP-70, NF-${\kappa}B$, and MCP-1 signaling. Int. J. Mol. Sci. 18: 1195 (2017) https://doi.org/10.3390/ijms18061195
  28. Puzanowska-Tarasiewicz H, Kuzmicka L, Tarasiewicz M. Organism defense against reactive oxygen species. Wiad. Lek. 62: 248-256 (2009)
  29. Ren J, Su D, Li L, Cai H, Zhang M, Zhai J, Li M, Wu X, Hu K. Anti-inflammatory effects of Aureusidin in LPS-stimulated RAW 264.7 macrophages via suppressing NF-kappaB and activating ROS- and MAPKs-dependent Nrf2/HO-1 signaling pathways. Toxicol. Appl. Pharmacol. 387: 114846 (2020) https://doi.org/10.1016/j.taap.2019.114846
  30. Schafer M, Werner S. The cornified envelope: a first line of defense against reactive oxygen species. J. Invest. Dermatol. 131: 1409-1411 (2011) https://doi.org/10.1038/jid.2011.119
  31. Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul. Pharmacol. 71: 40-56 (2015). https://doi.org/10.1016/j.vph.2015.03.005
  32. Vendemiale G, Grattagliano I, Altomare E. An update on the role of free radicals and antioxidant defense in human disease. Int. J. Clin. Lab. Res. 29: 49-55 (1999) https://doi.org/10.1007/s005990050063
  33. Wang Z, Liu Y, Zhao X, Liu S, Liu Y, Wang D. Aronia melanocarpa prevents alcohol-induced chronic liver injury via regulation of Nrf2 signaling in C57BL/6 Mice. Oxid. Med. Cell Longev. 2020: 4054520 (2020)
  34. Wilson HM, Chettibi S, Jobin C, Walbaum D, Rees AJ, Kluth DC. Inhibition of macrophage nuclear factor-kappaB leads to a dominant anti-inflammatory phenotype that attenuates glomerular inflammation in vivo. Am. J. Pathol. 167: 27-37 (2005) https://doi.org/10.1016/S0002-9440(10)62950-1