
INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegen-
erative disease characterized by deficits in cognitive function 
(Sevush and Leve, 1993; Backman et al., 2001), and accumu-
lations of amyloid β (Aβ) in the extracellular regions and tau 
aggregates in the intracellular regions of the brain (Ittner and 
Gotz, 2011; Jin et al., 2011; Lasagna-Reeves et al., 2012). 

Plasmin is an important protease in various physiologies, 
including clearance of blood clots and immune function (Alk-
jaersig et al., 1959; Draxler et al., 2017). In the brain, plasmin 
activates brain-derived neurotropic factor (BDNF) (Gray and 
Ellis, 2008; Rodier et al., 2014). Aβ is a substrate of plasmin, 
suggesting that plasmin could clear Aβ deposits (Van Nostrand 
and Porter, 1999; Jacobsen et al., 2008). BDNF protects neu-
rons against Aβ (Arancibia et al., 2008; Criscuolo et al., 2015), 
and BDNF signaling activation improves memory deficits in 
AD mouse models (Gao et al., 2016; de Pins et al., 2019). 
Moreover, small molecule binding of tropomyosin-related ki-
nase B (TrkB), a BDNF receptor, can improve AD-like symp-

toms in AD models (Castello et al., 2014; Gao et al., 2016). 
Taken together, this evidence suggests that an agent regulat-
ing plasmin activity may be a good candidate for AD therapy.

Spinosin is a flavonoid isolated from Zizyphus jujuba var. 
spinosa seeds (Shergis et al., 2017). Previously, we reported 
that spinosin ameliorated oligomeric Aβ-induced memory im-
pairments (Ko et al., 2015), reduced oligomeric Aβ-induced in-
flammation, and ameliorated choline-acetyl transferase in the 
hippocampus. Recently, we found that the ethanol extract of 
Zizyphus jujuba var. spinosa seeds activated plasmin activity 
(Park et al., 2019). Because spinosin is an active compound 
of Zizyphus jujuba var. spinosa seeds and has a protective ef-
fect in Aβ-induced AD models, we hypothesized that spinosin 
may regulate plasmin activity. In the present study, we tested 
whether spinosin affected plasmin activity.
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Hippocampal synaptic dysfunction is a hallmark of Alzheimer’s disease (AD). Many agents regulating hippocampal synaptic 
plasticity show an ameliorative effect on AD pathology, making them potential candidates for AD therapy. In the present study, 
we investigated spinosin as a regulating agent of synaptic plasticity in AD. Spinosin attenuated amyloid β (Aβ)-induced long-term 
potentiation (LTP) impairment, and improved plasmin activity and protein level in the hippocampi of 5XFAD mice, a transgenic AD 
mouse model. Moreover, the effect of spinosin on hippocampal LTP in 5XFAD mice was prevented by 6-aminocaproic acid, a plas-
min inhibitor. These results suggest that spinosin improves synaptic function in the AD hippocampus by regulating plasmin activity. 
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MATERIALS AND METHODS

Materials
Donepezil was donated DAEHWA pharmaceutical CO., 

LTD (Seoul, Korea). Aβ1-42 was purchased from Anaspec (CA, 
USA). Spinosin was purchased from Sigma-Aldrich (MO, 
USA). The antiplasmin, anti-plasminogen, and anti-glycer-
aldyhyde 3-phosphate dehydrogenase (GAPDH) antibodies 
were purchased from Snata Cruz Biotechnology (CA, USA). 
The 6-aminocaproic acid was purchased from Sigma-Aldrich. 
Plasmin assay kit was purchased from Abcam (Cambridge, 
UK).

Animals
Seven ICR mice (6 weeks old) were purchased from SAM-

TAKO Biokore (Osan, Korea). Male 5XFAD mice were ob-
tained from the Jackson Laboratory (CA, USA) and crossbred 
with female hybrid B6SJLF1 mice (Taconic, Seoul, Korea). 
The male heterozygous transgenic and littermate wild-type 
(WT) offspring were used for the experiments. Mice were 
housed in individual ventilated cages with access to water 
and food ad libitum, under a 12-h light/dark cycle (lights on 
from 07:30 to 19:30). For examine the effect of spinosin on Aβ-
induced synaptic deficit, hippocampal slice isolated from one 
ICR mice was treated with vehicle, Aβ+vehicle, Aβ+spinosin 
(3), Aβ+spinosin (30) or Aβ+donepezil for 2 h. Then, the hippo-
campal slice was subjected to electrophysiology. This experi-
ment was conducted repeatedly seven times with seven differ-
ent mice. For figure 2, 4 of 6-month-old 5XFAD and 4 of WT 

mice were used. Hippocampal slices from a 5XFAD mouse 
were treated with spinosin for 2 h, and then subjected to mea-
suring plasmin activity or western blot. For blocking experi-
ments, 4 of 6-month-old 5XFAD and 4 of WT mice were used. 
Hippocampal slices from a 5XFAD mouse were treated with 
spinosin and/or 6-amminocaproic acid for 2 h, and then sub-
jected to electrophysiology. The treatment and maintenance 
of the animals were performed out in accordance with the Ani-
mal Care and Use Guidelines of Kyung Hee University (Seoul, 
Korea). All of the experimental protocols using animals were 
approved by the Institutional Animal Care and Use Committee 
of Kyung Hee University (KHUASP(SE)-18-046). Behavioral 
experiments and data analysis were conducted by different 
persons who did not know group difference. 

Acute hippocampal slice preparation
Artificial cerebrospinal fluid (ACSF) was comprised of 124 

mM NaCl, 3 mM KCl, 26 mM NaHCO3, 1.25 mM NaH2PO4, 
2 mM CaCl2, 1 mM MgSO4, and 10 mM D-glucose. We rap-
idly removed the brain and isolated the mouse hippocampus. 
Mouse hippocampal tissues were sliced using a McIlwain tis-
sue chopper. 400-μm-thick hippocampal slices were made 
and incubated in ACSF (20-25°C) for 2 h before the experi-
ment.

Electrophysiology
Field potential responses were recorded in the Schaffer 

collateral-commissural pathway in area CA1. Stimuli (con-
stant voltage) were delivered at 30 s intervals. The slope of 
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Fig. 1. The effect of spinosin on LTP deficit induced by Aβ1-42 (10 μM) in the hippocampus. Acute hippocampal slices were produced form 
normal mouse. Slices were treated with drugs for 2 h before recording. Recordings were conducted in Schaffer-collateral pathway of the 
hippocampus. (A-E) fEPSP at each time point of control (A), Aβ (A), Aβ+spinosin (3) (B), Aβ+spinosin (10) (C), Aβ+spinosin (30) (D) or 
Aβ+DNP (E)-treated hippocampal slices. (F) Bar chart of data from 80 min time point. Data represented as mean ± SEM. *p<0.05 vs. con-
trol. #p<0.05 vs. Aβ. DNP, donepezil.
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the evoked field potential responses (fEPSP) was averaged 
from four consecutive recordings evoked at 30 s intervals. To 
induce LTP, two trains of high frequency stimulation (HFS: 100 
Hz, 100 pulses in 1 s, 30 s interval) were introduced at 20 min 
after the initiation of a stable baseline. LTP was quantified by 
comparing the mean fEPSP slope at 80 min after the HFS 
period with the mean fEPSP slope during the baseline period 
and calculating the percentage change from the baseline. For 
the experiments with Aβ, Aβ dissolved in DPBS at 1 mg/mL 
and agitated at 37°C for 24 h for aggregation. Hippocampal 
slices were incubated in ACSF containing vehicle or drugs 
for 30 min, and then further incubated in ACSF containing Aβ 
oligomer (1 μM) and/or drugs for 2 h before recording. For 
the blocking experiments with 5XFAD mice, slices were incu-
bated in ACSF containing inhibitor (100 μM), and then further 
incubated in ACSF containing inhibitor+spinosin 2 h before 
recording.

Plasmin activity assay
Plasmin activity was measured using commercial plasmin 

activity assay kit (Abcam, ab204728). All procedures were fol-
lowed to protocol presented from Abcam. Hippocampal slices 
were incubated with spinosin containing ACSF for 2 h. After 
then hippocampal slices were homogenized in ice-chilled 
Tris–HCl buffer [20 mM, pH 7.4, sucrose (0.32 M), ethylene-
diaminetetraacetic acid (EDTA) (1 mM), ethylene glycol bis(2-
aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA) (1 mM)]. 
Debris was removed by microcentrifugation (4200×g, 20 min). 
A mixture of 50 μl of sample (10 μg of protein) and 50 μl of 
reaction mix (48 μl plasmin assay buffer+2 μl of plasmin sub-
strate) was made. Measure output on a fluorescent microplate 
reader at Ex/Em=360/450 nm in a kinetic mode, every 2-3 
min, for 10-20 min at 37°C protected from light.

Western blot analysis
Hippocampal slices were incubated with spinosin contain-

ing ACSF for 2 h. Afterwards hippocampal slices were ho-
mogenized in ice-chilled M-PER buffer (Thermo, Rockford, IL, 
USA), a containing protease inhibitor, and phosphatase inhibi-
tor cocktail (Thermo). Debris was removed by microcentrifuga-
tion (4200×g, 20 min). Proteins from whole-cell lysates were 

quantified using a BCA protein assay kit following the manu-
facturer’s instructions. Samples (30 μg of protein) were then 
subjected to SDS-PAGE (12% gel) under reducing conditions. 
Proteins were transferred to PDVF membranes using transfer 
buffer (25 mM Tris-HCl, pH 7.4 containing 192 mM glycine 
and 20% v/v methanol) at 400 mA for 2 h (4°C). Next, blots 
were incubated for 2 h with blocking solution (5% skimmed 
milk for total proteins, 5% BSA for phosphorylated proteins) 
and then placed at 4°C overnight with 1:1000 dilutions of anti-
goat plasmin antibody (Santa Cruz Biotechnology Inc., Santa 
Cruz, CA), anti-rabbit plasminogen antibody (Santa Cruz Bio-
technology Inc.) or anti-rabbit GAPDH antibody (Santa Cruz 
Biotechnology Inc.). After serial washing, blots were incubated 
with a 1:5000 dilution of horseradish peroxidase-conjugated 
secondary antibody (Santa Cruz Biotechnology Inc.) for 1 h at 
room temperature. 

Statistics
Values are expressed as the mean ± SEM. Data were ana-

lyzed by one-way analysis of variance (ANOVA) followed by 
Tukey’s post hoc test for multiple comparisons. Statistical sig-
nificance was set at p<0.05. 

RESULTS

Spinosin attenuated Aβ-induced long-term potentiation 
(LTP) impairment in the hippocampus

To investigate the effect of spinosin, LTP was measured in 
hippocampal slices treated with Aβ and/or spinosin. Aβ-treated 
slices showed significantly lower LTP levels than did control 
slices (Fig. 1A, 1F). Spinosin (30 μM) and donepezil (DNP), a 
positive control, attenuated this Aβ-induced LTP reduction in a 
concentration dependent manner (F5, 36=11.42, p<0.05, n=7/
group, Fig. 1).

Spinosin regulated plasmin activity in the 5XFAD 
hippocampus

Previously, we found that Zizyphus jujuba var. spinosa 
seeds increased plasmin activity in the hippocampus. Since 
spinosin is an active compound isolated from Zizyphus juju-
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ba var. spinosa seeds, we tested whether spinosin regulates 
hippocampal plasmin activity. Plasmin activity was signifi-
cantly lower in the hippocampus of 5XFAD than in that of WT 
(F6,20=4.296, p<0.05, n=3-4/group, Fig. 2A). Spinosin-treated 
hippocampal slices of 5XFAD showed significantly higher 
plasmin activity than did vehicle-treated hippocampal slices of 
5XFAD (p<0.05, Fig. 2A). Plasmin protein levels were signifi-
cantly lower in the hippocampus of 5XFAD mice than in that 
of WT mice (F2,9=4.483, p<0.05, n=4/group, Fig. 2B, 2C) while 
plasminogen levels were unaffected (F2,9=0.005, p>0.05, n=4/
group, Fig. 2B, 2C). Spinosin treatment rescued this plasmin 
level reduction (Fig. 2B, 2C). 

Spinosin improved LTP in the 5XFAD hippocampus 
through regulation of plasmin activity

To confirm that the effect of spinosin on plasmin was in-
volved in the effect of spinosin on synaptic deficit of the 
5XFAD hippocampus, we investigated whether the plasmin in-
hibitor 6-aminocaproic acid improved the effect of spinosin on 
LTP deficits in the 5XFAD hippocampus. There were signifi-
cant group effects (F3,16=8.12, p<0.05, n=5/group, Fig. 3D). A 
significantly lower LTP level was observed in the hippocampus 
of 5XFAD mice than in that of control mice (control, 145 ± 12, 
n=5; 5XFAD, 109 ± 3, n=5, Fig. 3A, 3D). Spinosin (30 μM) sig-
nificantly improved LTP in the 5XFAD hippocampus (153 ± 12, 
n=5, Fig. 3B, 3D). The effect of spinosin on LTP was blocked 
by 6-aminocaproic acid (105 ± 3, n=5, Fig. 3C, 3D). These re-
sults suggest that spinosin improves LTP deficits in the 5XFAD 
hippocampus through the regulation of plasmin activity. 

DISCUSSION

In the present study, we found that spinosin improves LTP 
in the Aβ-treated hippocampus of normal mice or the hippo-
campus of 5XFAD mice. Spinosin improves plasmin activity, 
which is down-regulated in the hippocampus of 5XFAD mice. 
6-aminocaproic acid blocked this spinosin-improved LTP in 
the hippocampus of 5XFAD mice.

The tissue plasminogen activator (tPA)/plasmin system has 
been suggested as a therapeutic target for AD (Angelucci et 
al., 2019). Plasmin can cleave Aβ and Aβ deposits, suggesting 
that it may be involved in Aβ clearance (Ledesma et al., 2000; 
Jacobsen et al., 2008; Baranello et al., 2015). It was found that 
there is less plasmin activity in the AD brain than in the normal 
brain (Dotti et al., 2004; Barker et al., 2010). tPA administra-
tion, which is believed to activate plasmin, protected against 
memory loss in AD mouse models (Tucker et al., 2000; ElAli 
et al., 2016). Taken together, this information suggests that 
agents, who increase plasmin activity directly or indirectly, 
may be good candidates for AD therapy. In the present study, 
we found that spinosin ameliorated deficits in plasmin activ-
ity in the 5XFAD mouse hippocampus. Interesingly, we found 
that spinosin increase plasmin level and its activity without af-
fecting the level of plasminogen. These suggest that spinosin 
might activate plasminogen cleavage system. Spinosin could 
up-regulate activity of tPA. Otherwise, spinosin may suppress 
activity of neuroserpin or PAI-I, inhibitors of plasminogen acti-
vators. Although we still do not know the precise mechanism 
of the effect of spinosin on plasmin and its side effects, spino-
sin could be considered a candidate for AD therapy. 

Synaptic plasticity is a cellular mechanism of learning and 
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memory (Maren and Baudry, 1995; Sutton and Schuman, 
2006). Aβ induces internalization of the AMPA receptor, a 
major target of synaptic plasticity, and this is believed to be 
a mechanism of Aβ-induced synaptic deficits and memory 
impairment (Lee et al., 2003; Parameshwaran et al., 2008; 
Guntupalli et al., 2016). Because monomeric Aβ does not 
show synaptotoxicity, oligomeric Aβ is believed to be the toxic 
species (Walsh et al., 2002; Ono et al., 2009; Sengupta et 
al., 2016). Therefore, if an agent could dissociate preformed 
oligomeric Aβ, could negate the synaptotoxicity of oligomeric 
Aβ. In the present study, spinosin blocked Aβ-induced synap-
tic deficits. Because spinosin increased plasmin activity, which 
is believed to be involved in Aβ clearance, this is hypothesized 
to be the mechanism of action of spinosin on synaptic deficit. 

We still do not know how spinosin regulates plasmin ac-
tivity, as plasmin could be regulated by various mechanisms. 
Plasmin is produced by proteolytic cleavage of plasminogen 
(Vassalli et al., 1991), and various plasminogen activators, in-
cluding tPA, are involved in this process (Sappino et al., 1993; 
Li et al., 2003). These plasminogen activators are regulated by 
neuroserpin and plasminogen activator inhibitor 1 (Vassalli et 
al., 1991; Krueger et al., 1997; Lebeurrier et al., 2005). How-
ever, plasmin may be inactivated by α2-antiplasmin, a serine 
protase inhibitor (Schaller and Gerber, 2011). Regulation of 
these molecules could regulate plasmin activity. Therefore, 
these molecules may be targets of spinosin. Further research 
is needed to answer these questions. 
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