DOI QR코드

DOI QR Code

Imipramine Ameliorates Depressive Symptoms by Blocking Differential Alteration of Dendritic Spine Structure in Amygdala and Prefrontal Cortex of Chronic Stress-Induced Mice

  • Leem, Yea-Hyun (Department of Pharmacy, College of Pharmacy, Dankook University) ;
  • Yoon, Sang-Sun (Department of Pharmacy, College of Pharmacy, Dankook University) ;
  • Jo, Sangmee Ahn (Department of Pharmacy, College of Pharmacy, Dankook University)
  • Received : 2019.09.17
  • Accepted : 2019.12.11
  • Published : 2020.05.01

Abstract

Previous studies have shown disrupted synaptic plasticity and neural activity in depression. Such alteration is strongly associated with disrupted synaptic structures. Chronic stress has been known to induce changes in dendritic structure in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC), but antidepressant effect on structure of these brain areas has been unclear. Here, the effects of imipramine on dendritic spine density and morphology in BLA and mPFC subregions of stressed mice were examined. Chronic restraint stress caused depressive-like behaviors such as enhanced social avoidance and despair level coincident with differential changes in dendritic spine structure. Chronic stress enhanced dendritic spine density in the lateral nucleus of BLA with no significant change in the basal nucleus of BLA, and altered the proportion of stubby or mushroom spines in both subregions. Conversely, in the apical and basal mPFC, chronic stress caused a significant reduction in spine density. The proportion of stubby or mushroom spines in these subregions overall reduced while the proportion of thin spines increased after repeated stress. Interestingly, most of these structural alterations by chronic stress were reversed by imipramine. In addition, structural changes caused by stress and blocking the changes by imipramine were corelated well with altered activation and expression of synaptic plasticity-promoting molecules such as phospho-CREB, phospho-CAMKII, and PSD-95. Collectively, our data suggest that imipramine modulates stress-induced changes in synaptic structure and synaptic plasticity-promoting molecules in a coordinated manner although structural and molecular alterations induced by stress are distinct in the BLA and mPFC.

Keywords

References

  1. Bourne, J. N. and Harris, K. M. (2008) Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci. 31, 47-67. https://doi.org/10.1146/annurev.neuro.31.060407.125646
  2. Chocyk, A., Bobula, B., Dudys, D., Przyborowska, A., Majcher-Maslanka, I., Hess, G. and Wedzony, K. (2013) Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats. Eur. J. Neurosci. 38, 2089-2107. https://doi.org/10.1111/ejn.12208
  3. Correll, C. M., Rosenkranz, J. A. and Grace, A. A. (2005) Chronic cold stress alters prefrontal cortical modulation of amygdala neuronal activity in rats. Biol. Psychiatry 58, 382-391. https://doi.org/10.1016/j.biopsych.2005.04.009
  4. Duman, R. S. and Monteggia, L. M. (2006) A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59, 1116-1127. https://doi.org/10.1016/j.biopsych.2006.02.013
  5. Duric, V., Banasr, M., Stockmeier, C. A., Simen, A. A., Newton, S. S., Overholser, J. C., Jurjus, G. J., Dieter, L. and Duman, R. S. (2013) Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int. J. Neuropsychopharmacol. 16, 69-82. https://doi.org/10.1017/S1461145712000016
  6. Ehrlich, I. and Malinow, R. (2004) Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J. Neurosci. 24, 916-927. https://doi.org/10.1523/JNEUROSCI.4733-03.2004
  7. Frodl, T., Meisenzahl, E., Zetzsche, T., Bottlender, R., Born, C., Groll, C., Jager, M., Leinsinger, G., Hahn, K. and Moller, H. J. (2002) Enlargement of the amygdala in patients with a first episode of major depression. Biol. Psychiatry 51, 708-714. https://doi.org/10.1016/S0006-3223(01)01359-2
  8. Harris, K. M., Jensen, F. E. and Tsao, B. (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685-2705. https://doi.org/10.1523/JNEUROSCI.12-07-02685.1992
  9. Horner, C. H. and Arbuthnott, E. (1991) Methods of estimation of spine density--are spines evenly distributed throughout the dendritic field? J. Anat. 177, 179-184.
  10. Kaidanovich-Beilin, O., Lipina, T., Vukobradovic, I., Roder, J. and Woodgett, J. R. (2011) Assessment of social interaction behaviors. J. Vis. Exp. 25, 2473.
  11. Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. and Nakahara, H. (2003) Structure-stability-function relationships of dendritic spines. Trends Neurosci. 26, 360-368. https://doi.org/10.1016/S0166-2236(03)00162-0
  12. Kim, E. and Sheng, M. (2004) PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5, 771-781. https://doi.org/10.1038/nrn1517
  13. Kroner, S., Rosenkranz, J. A., Grace, A. A. and Barrionuevo, G. (2005) Dopamine modulates excitability of basolateral amygdala neurons in vitro. J. Neurophysiol. 93, 1598-1610. https://doi.org/10.1152/jn.00843.2004
  14. Kulkarni, V. A. and Firestein, B. L. (2012) The dendritic tree and brain disorders. Mol. Cell. Neurosci. 50, 10-20. https://doi.org/10.1016/j.mcn.2012.03.005
  15. Lange, C. and Irle, E. (2004) Enlarged amygdala volume and reduced hippocampal volume in young women with major depression. Psychol. Med. 34, 1059-1064. https://doi.org/10.1017/S0033291703001806
  16. Leem, Y. H., Yoon, S. S., Kim, Y. H. and Jo, S. A. (2014) Disrupted MEK/ERK signaling in the medial orbital cortex and dorsal endopiriform nuclei of the prefrontal cortex in a chronic restraint stress mouse model of depression. Neurosci. Lett. 580, 163-168. https://doi.org/10.1016/j.neulet.2014.08.001
  17. Leuner, B., Fredericks, P. J., Nealer, C. and Albin-Brooks, C. (2014) Chronic gestational stress leads to depressive-like behavior and compromises medial prefrontal cortex structure and function during the postpartum period. PLoS ONE 9, e89912. https://doi.org/10.1371/journal.pone.0089912
  18. Leuner, B. and Shors, T. J. (2013) Stress, anxiety, and dendritic spines: what are the connections? Neuroscience 251, 108-119. https://doi.org/10.1016/j.neuroscience.2012.04.021
  19. Lisman, J., Schulman, H. and Cline, H. (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175-190. https://doi.org/10.1038/nrn753
  20. Li, N., Liu, R. J., Dwyer, J. M., Banasr, M., Lee, B., Son, H., Li, X. Y., Aghajanian, G. and Duman, R. S. (2011) Glutamate N-methyl-Daspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol. Psychiatry 69, 754-761. https://doi.org/10.1016/j.biopsych.2010.12.015
  21. Liu, S. J. and Zukin, R. S. (2007) Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci. 30, 126-134. https://doi.org/10.1016/j.tins.2007.01.006
  22. Luczynski, P., Moquin, L. and Gratton, A. (2015) Chronic stress alters the dendritic morphology of callosal neurons and the acute glutamate stress response in the rat medial prefrontal cortex. Stress 18, 654-667. https://doi.org/10.3109/10253890.2015.1073256
  23. Matsuzaki, M., Ellis-Davies, G. C., Nemoto, T., Miyashita, Y., Iino, M. and Kasai, H. (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086-1092. https://doi.org/10.1038/nn736
  24. McDonald, A. J. (1991) Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44, 1-14. https://doi.org/10.1016/0306-4522(91)90247-L
  25. Nimchinsky, E. A., Sabatini, B. L. and Svoboda, K. (2002) Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313-353. https://doi.org/10.1146/annurev.physiol.64.081501.160008
  26. Nishiyama, J. and Yasuda, R. (2015) Biochemical computation for spine structural plasticity. Neuron 87, 63-75. https://doi.org/10.1016/j.neuron.2015.05.043
  27. Padival, M., Quinette, D. and Rosenkranz, J. A. (2013) Effects of repeated stress on excitatory drive of basal amygdala neurons in vivo. Neuropsychopharmacology 38, 1748-1762. https://doi.org/10.1038/npp.2013.74
  28. Peters, A. and Kaiserman-Abramof, I. R. (1970) The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am. J. Anat. 127, 321-355. https://doi.org/10.1002/aja.1001270402
  29. Pham, K., Nacher, J., Hof, P. R. and McEwen, B. S. (2003) Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur. J. Neurosci. 17, 879-886. https://doi.org/10.1046/j.1460-9568.2003.02513.x
  30. Price, J. L. and Drevets, W. C. (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35, 192-216. https://doi.org/10.1038/npp.2009.104
  31. Quan, M., Zheng, C., Zhang, N., Han, D., Tian, Y., Zhang, T. and Yang, Z. (2011) Impairments of behavior, information flow between thalamus and cortex, and prefrontal cortical synaptic plasticity in an animal model of depression. Brain Res. Bull. 85, 109-116. https://doi.org/10.1016/j.brainresbull.2011.03.002
  32. Radley, J. J., Rocher, A. B., Rodriguez, A., Ehlenberger, D. B., Dammann, M., McEwen, B. S., Morrison, J. H., Wearne, S. L. and Hof, P. R. (2008) Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J. Comp. Neurol. 507, 1141-1150. https://doi.org/10.1002/cne.21588
  33. Rosenkranz, J. A., Venheim, E. R. and Padival, M. (2010) Chronic stress causes amygdala hyperexcitability in rodents. Biol. Psychiatry 67, 1128-1136. https://doi.org/10.1016/j.biopsych.2010.02.008
  34. Rosenkranz, J. A. and Grace, A. A. (2002) Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J. Neurosci. 22, 324-337. https://doi.org/10.1523/jneurosci.22-01-00324.2002
  35. Sapolsky, R. M. (2000) The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol. Psychiatry 48, 755-765. https://doi.org/10.1016/S0006-3223(00)00971-9
  36. Sargin, D., Mercaldo, V., Yiu, A. P., Higgs, G., Han, J. H., Frankland, P. W. and Josselyn, S. A. (2013) CREB regulates spine density of lateral amygdala neurons: implications for memory allocation. Front. Behav. Neurosci. 7, 209. https://doi.org/10.3389/fnbeh.2013.00209
  37. Segal, M. and Andersen, P. (2000) Dendritic spines shaped by synaptic activity. Curr. Opin. Neurobiol. 10, 582-586. https://doi.org/10.1016/S0959-4388(00)00123-9
  38. Sousa, N., Lukoyanov, N. V., Madeira, M. D., Almeida, O. F. and Paula-Barbosa, M. M. (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97, 253-266. https://doi.org/10.1016/S0306-4522(00)00050-6
  39. Tavosanis, G. (2012) Dendritic structural plasticity. Dev. Neurobiol. 72, 73-86. https://doi.org/10.1002/dneu.20951
  40. Treadway, M. T. and Zald, D. H. (2011) Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci. Biobehav. Rev. 35, 537-555. https://doi.org/10.1016/j.neubiorev.2010.06.006
  41. Tyler, W. J. and Pozzo-Miller, L. (2003) Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones. J. Physiol. 553, 497-509. https://doi.org/10.1113/jphysiol.2003.052639
  42. Vaynman, S., Ying, Z. and Gomez-Pinilla, F. (2007) The select action of hippocampal calcium calmodulin protein kinase II in mediating exercise-enhanced cognitive function. Neuroscience 144, 825-833. https://doi.org/10.1016/j.neuroscience.2006.10.005
  43. Yi, E. S., Oh, S., Lee, J. K. and Leem, Y. H. (2017) Chronic stressinduced dendritic reorganization and abundance of synaptosomal PKA-dependent CP-AMPA receptor in the basolateral amygdala in a mouse model of depression. Biochem. Biophys. Res. Commun. 486, 671-678. https://doi.org/10.1016/j.bbrc.2017.03.093
  44. Yuste, R., Majewska, A. and Holthoff, K. (2000) From form to function: calcium compartmentalization in dendritic spines. Nat. Neurosci. 3, 653-659. https://doi.org/10.1038/76609

Cited by

  1. Stress induces microglia-associated synaptic circuit alterations in the dorsomedial prefrontal cortex vol.15, 2020, https://doi.org/10.1016/j.ynstr.2021.100342