DOI QR코드

DOI QR Code

Application of An Ecological Engineering Approach in Evaluating Protected Area at Local Scales

생태계 보호지역 평가에서 생태공학 도입과 활용

  • Received : 2020.03.04
  • Accepted : 2020.04.06
  • Published : 2020.04.30

Abstract

This research developed an approach to identify ecologically important areas at local scales and explained how the results of this approach could contribute to extend the protected areas in the Republic of Korea (ROK). While most developed countries have considered various biotic and abiotic factors, ecological processes, migration routes, habitat connectivity, ecosystem services, and etc. to determine the protected areas, ROK has considered a few factors focusing on biodiversity, landscape, and the habitats of endangered organisms. However, for sustainable management of our nature, we need comprehensive understanding of various ecosystem factors and interactions among them at local scales in designating protected areas. Forthis, we developed a conceptual model based on the ecological engineering approach and then explained how the results of this approach could contribute to extend the protected areas. In particular, we considered future land-use and climate change in determining the priority areas for novel protected areas. Our research suggested an effective methodology 1) to include various ecosystem factors and 2) to consider future environmental changes as well as current environmental conditions in finding the ecologically important areas and prioritizing these areas. However, our approach has limitations on the real-world applications due to the lack of fundamental information and data on our ecosystems. To improve the effectiveness of our approach in the real-world applications, we need various long-term ecological research results, environmental and ecological monitoring data, and both current and future spatial environmental data.

본 연구에서는 다양한 생태계의 보전 및 생물다양성 보전과 증진을 통한 생태계의 지속가능한 이용을 위하여 우리나라 생태계 보호지역 확대를 위한 평가기법과 이의 정책적 활용 방향을 제시하였다. 이를 위하여 첫째, 생태계 보호지역 평가기법 활용 현황을 분석하였고, 둘째, 생태공학 기법을 기반으로 지역 규모의 생태계 보호지역 평가를 위한 개념 모형을 제시하였으며, 셋째, 이러한 분석 결과의 활용 방안을 제언하였다. 국외에서 보호지역 지정 시 다양한 분석 모형을 활용하고 있는 것과 달리, 우리나라의 경우 장기 생태계 모니터링 및 생태연구 자료가 부족하여 보호지역 지정 분석기법의 개발 및 적용이 미흡한 상태이다. 특히 미소 규모나 지역 규모보다는 국가 규모의 분석에 기반한 보호지역 지정이 주를 이루고 있어 지역 규모의 다양한 생태계가 반영되지 못하고 있다. 보호지역의 합리적인 지정과 효과적인 관리를 위해서는 다양한 인자들과 인자들 간의 상호작용을 고려한 지역 규모의 종합분석이 필요하며, 이를 위하여 본 연구에서는 생태공학 기법을 토대로 한 보호지역 분석의 개념 모형을 제시하였다. 본 연구에서 제시한 생태계 보호지역 분석은 다양한 생물 인자 및 비생물 인자, 그리고 이들의 상호작용 및 미래 환경변화를 고려한 각 지역 생태계의 특성을 반영하기 때문에 현재 우수한 생태계뿐만 아니라 앞으로 중요하게 보호해야 할 생태계를 보호지역으로 편입할 수 있는 근거를 제시하였다. 그러나 본 연구에서 제시한 분석 기법의 충분한 활용을 위해서는 각 지표항목과 지표항목에 속하는 인자들에 대한 개별 생태연구 자료 및 공간자료가 필요하다. 이러한 분석의 한계를 해결하기 위해서는 장기간의 생태자료와 종별 서식지 환경조건에 대한 연구 자료가 필요하며 서식지 모형, 생태모형, hybrid 모형 등 경관생태모형을 활용한 분석이 필요하다.

Keywords

References

  1. Choung HL, Rho P, Song JY. 2005. Study on the Improvement of Ecological Naturality Survey System. National Institute of Environmental Research.
  2. Dickson BG, Albano CM, McRae BH, Anderson JJ, Theobald DM et al. 2017. Informing Strategic Efforts to Expand and Connect Protected Areas Using a Model of Ecological Flow, with Application to the Western United States. Conservation Letters 10(5): 564-571. https://doi.org/10.1111/conl.12322
  3. Duarte GT, Ribeiro MC, Paglia AP. 2016. Ecosystem Services Modeling as a Tool for Defining Priority Areas for Conservation. PloS One 11(5): e0154573. https://doi.org/10.1371/journal.pone.0154573
  4. Engler R, Guisan A. 2009. MigClim: Predicting Plant Distribution and Dispersal in a Changing Climate. Diversity and Distributions 15(4): 590-601. https://doi.org/10.1111/j.1472-4642.2009.00566.x
  5. Giakoumi S, Sini M, Gerovasileiou V, Mazor T, Beher J, Possingham HP et al. 2013. Ecoregion-based Conservation Planning in the Mediterranean: Dealing with Largescale Heterogeneity. PloS One 8(10): e76449. https://doi.org/10.1371/journal.pone.0076449
  6. Hall LS, Krausman PR, Morrison ML. 1997. The Habitat Concept and a Plea for Standard Terminology. Wildlife Society Bulletin 25(1): 173-182.
  7. IUCN. 2013. Guidelines for Applying Protected Area Management Categories.
  8. Jorgensen SE, Fath BD. 2011. Fundamentals of Ecological Modelling: Applications in Environmental Management and Research 4th ed. Amsterdam: Elsevier.
  9. Kim J, Lee W. 2015. Task and Curriculum Contents of Applied Ecological Engineering Education. Ecology and Resilient Infrastructure 2(1): 1-11. https://doi.org/10.17820/eri.2015.2.1.001
  10. Kukkala A. 2017. Spatial Conservation Planning for Biodiversity and Ecosystem Services-from Concepts and Methods to Policy Agendas in the European Union. Department of Geosciences and Geography A49, Helsingki.
  11. Levin NJ, Watson EM, Joseph LN, Grantham HS, Hadar L, Apel N et al. 2013. A Framework for Systematic Conservation Planning and Management of Mediterranean Landscapes. Biological Conservation 158: 371-383. https://doi.org/10.1016/j.biocon.2012.08.032
  12. Loyola RD, Lemes P, Nabout JC, Trindade-Filho J, Sagnori MD, Dobrovolski R, Diniz-Filho JAF. 2013. A Straightforward Conceptual Approach for Evaluating Spatial Conservation Priorities under Climate Change. Biodiversity and Conservation 22(2): 483-495. https://doi.org/10.1007/s10531-012-0424-x
  13. Ministry of Environment. 2007. Study on objectification of designation criteria for ecosystem protection area. Sejong.
  14. Ministry of Environment. 2008. The Second National Park Feasibility Study Criteria and Natural Park System Improvement. Sejong.
  15. Ministry of Environment. 2019. The Third National Park Feasibility Study Criteria and Natural Park System Improvement. Sejong.
  16. Mitsch WJ, Jorgensen SE. 2003. Ecological Engineering: A Field Whose Time Has Come. Ecological Engineering 20(5): 363-377. https://doi.org/10.1016/j.ecoleng.2003.05.001
  17. Mitsch WJ, Jorgensen SE. 2004. Ecological Engineering and Ecosystem Restoration. John Wiley & Sons.
  18. Mo YW, Lee DK , Kim HG, Baek GH, Nam SJ. 2013. Efficient Establishment of Protected Areas in Pyoungchang County, Kangwon Province to Support Spatial Decision Making. Journal of the Korea Society of Environmental Restoration Technology 16(1): 171-180. https://doi.org/10.13087/kosert.2013.16.1.171
  19. Odum HT. 1989. Ecological Engineering: An Introduction to Ecotechnology. Ecological Engineering and Self-Organization, pp. 79-101.
  20. Odum HT, Odum B. 2003. Concepts and Methods of Ecological Engineering. Ecological Engineering 20(5): 339-361. https://doi.org/10.1016/j.ecoleng.2003.08.008
  21. Onal H, Wang Y. 2008. A Graph Theory Approach for Designing Conservation Reserve Networks with Minimal Fragmentation. Networks 51(2): 142-152. https://doi.org/10.1002/net.20211
  22. Riahi K, Vuuren DP, Kriegler E, Edmonds J, O’Neill B, Fujimori S et al. 2017. The Shared Socioeconomic Pathways and their Energy, Land use, and Greenhouse Gas Emissions Implications: An Overview. Global Environmental Change 42: 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.009
  23. Sharp R, Tallis HT, Ricketts T, Guerry AD, Wood SA, Chaplin-Kramer R et al. 2016. InVEST User's Guide, The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund, USA.
  24. Swetnam RD, Fisher B, Mbilinyi BP, Munishi PK, Wilcock S, Ricketts T et al. 2011. Mapping Socio-economic Scenarios of Land Cover Change: A GIS Method to Enable Ecosystem Service Modelling. Journal of Environmental Management 92(3); 563-574. https://doi.org/10.1016/j.jenvman.2010.09.007
  25. Vigerstol KL, Aukema JE. 2011. A Comparison of Tools for Modeling Freshwater Ecosystem Services. Journal of Environmental Management 92(10): 2403-2409. https://doi.org/10.1016/j.jenvman.2011.06.040
  26. Walker B, Salt D. 2006. Resilience Thinking: Sustaining Ecosystems and People in a Changing World. Island Press.
  27. Woo H, Jung J, Kim J, Nam K. 2017. Ecological Engineering: Principle and Application. Seoul. Cheong Moon Gak.