References
- Jablonska-Trypuc A, Matejczyk M and Rosochacki S (2016) Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzy Inhi Med Chem 31, 177-183 https://doi.org/10.3109/14756366.2016.1161620
- Pellikainen JM, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ and Kosma VM (2004) Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in breast cancer with a special reference to activator protein-2, HER2, and prognosis. Clin Cancer Res 10, 7621-7628 https://doi.org/10.1158/1078-0432.CCR-04-1061
- Kohrmann A, Kammerer U, Kapp M, Dietl J and Anacker J (2009) Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: New findings and review of the literature. BMC Cancer 9, 188 https://doi.org/10.1186/1471-2407-9-188
- Ono Y, Fujii T, Igarashi K et al (1989) Phorbol ester binding to protein kinase C requires a cysteine-rich zincfinger-like sequence. Proc Natl Acad Sci U S A 86, 4868-4871 https://doi.org/10.1073/pnas.86.13.4868
- Gould CM and Newton AC (2008) The life and death of protein kinase C. Curr Drug Targets 9, 614-625 https://doi.org/10.2174/138945008785132411
- Su Z, Song J, Wang Z et al (2018) Tumor promoter TPA activates Wnt/beta-catenin signaling in a casein kinase 1-dependent manner. Proc Natl Acad Sci U S A 115, E7522-E7531 https://doi.org/10.1073/pnas.1802422115
- Kim HJ, Park SY, Park OJ and Kim YM (2013) Curcumin suppresses migration and proliferation of Hep3B hepatocarcinoma cells through inhibition of the Wnt signaling pathway. Mol Med Rep 8, 282-286 https://doi.org/10.3892/mmr.2013.1497
- Diradourian C, Girard J and Pegorier JP (2005) Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie 87, 33-38 https://doi.org/10.1016/j.biochi.2004.11.010
- Wang X, Sun Y, Wong J and Conklin DS (2013) PPARgamma maintains ERBB2-positive breast cancer stem cells. Oncogene 32, 5512-5521 https://doi.org/10.1038/onc.2013.217
- Robbins GT and Nie D (2012) PPAR gamma, bioactive lipids, and cancer progression. Front Biosci (Landmark Ed) 17, 1816-1834 https://doi.org/10.2741/4021
- Kourtidis A, Srinivasaiah R, Carkner RD, Brosnan MJ and Conklin DS (2009) Peroxisome proliferator-activated receptor-gamma protects ERBB2-positive breast cancer cells from palmitate toxicity. Breast Cancer Res 11, R16 https://doi.org/10.1186/bcr2240
- Srivastava N, Kollipara RK, Singh DK et al (2014) Inhibition of cancer cell proliferation by PPARgamma is mediated by a metabolic switch that increases reactive oxygen species levels. Cell Metab 20, 650-661 https://doi.org/10.1016/j.cmet.2014.08.003
- Tsubaki M, Takeda T, Tomonari Y et al (2018) Pioglitazone inhibits cancer cell growth through STAT3 inhibition and enhanced AIF expression via a PPARgamma-independent pathway. J Cell Physiol 233, 3638-3647 https://doi.org/10.1002/jcp.26225
- Liu H, Zang C, Fenner MH, Possinger K and Elstner E (2003) PPARgamma ligands and ATRA inhibit the invasion of human breast cancer cells in vitro. Breast Cancer Res Treat 79, 63-74 https://doi.org/10.1023/A:1023366117157
- Lin CW, Shen SC, Hou WC, Yang LY and Chen YC (2008) Heme oxygenase-1 inhibits breast cancer invasion via suppressing the expression of matrix metalloproteinase-9. Mol Cancer Ther 7, 1195-1206 https://doi.org/10.1158/1535-7163.MCT-07-2199
- Yokoo T and Kitamura M (1996) Dual regulation of IL-1 beta-mediated matrix metalloproteinase-9 expression in mesangial cells by NF-kappa B and AP-1. Am J Physiol 270, F123-130
- Park JH, Jeong YJ, Park KK et al (2010) Melittin suppresses PMA-induced tumor cell invasion by inhibiting NF-kappaB and AP-1-dependent MMP-9 expression. Mol Cells 29, 209-215 https://doi.org/10.1007/s10059-010-0028-9
- Maines MD (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 2, 2557-2568 https://doi.org/10.1096/fasebj.2.10.3290025
- Wu ML, Ho YC, Lin CY and Yet SF (2011) Heme oxygenase-1 in inflammation and cardiovascular disease. Am J Cardiovasc Dis 1, 150-158
- Lee HN, Jin HO, Park JA et al (2015) Heme oxygenase-1 determines the differential response of breast cancer and normal cells to piperlongumine. Mol Cells 38, 327-335 https://doi.org/10.14348/molcells.2015.2235
- Lee WY, Chen YC, Shih CM et al (2014) The induction of heme oxygenase-1 suppresses heat shock protein 90 and the proliferation of human breast cancer cells through its byproduct carbon monoxide. Toxicol Appl Pharmacol 274, 55-62 https://doi.org/10.1016/j.taap.2013.10.027
- Kronke G, Kadl A, Ikonomu E et al (2007) Expression of heme oxygenase-1 in human vascular cells is regulated by peroxisome proliferator-activated receptors. Arterioscler Thromb Vasc Biol 27, 1276-1282 https://doi.org/10.1161/ATVBAHA.107.142638
- Park SY, Bae JU, Hong KW and Kim CD (2011) HO-1 Induced by cilostazol protects against TNF-alpha-associated cytotoxicity via a PPAR-gamma-dependent pathway in human endothelial cells. Korean J Physiol Pharmacol 15, 83-88 https://doi.org/10.4196/kjpp.2011.15.2.83
- Vanella L, Kim DH, Asprinio D et al (2010) HO-1 expression increases mesenchymal stem cell-derived osteoblasts but decreases adipocyte lineage. Bone 46, 236-243 https://doi.org/10.1016/j.bone.2009.10.012