References
- E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213-259. https://doi.org/10.1007/s00205-002-0208-7
- R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- K. Ait-Mahiout and C. O. Alves, Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz-Sobolev spaces without Ambrosetti-Rabinowitz condition, J. Elliptic Parabol. Equ. 4 (2018), no. 2, 389-416. https://doi.org/10.1007/s41808-018-0026-1
- B. Amaziane, L. Pankratov, and A. Piatnitski, Nonlinear flow through double porosity media in variable exponent Sobolev spaces, Nonlinear Anal. Real World Appl. 10 (2009), no. 4, 2521-2530. https://doi.org/10.1016/j.nonrwa.2008.05.008
- M. Avci, Ni-Serrin type equations arising from capillarity phenomena with non-standard growth, Bound. Value Probl. 2013 (2013), 55, 13 pp. https://doi.org/10.1186/1687-2770-2013-55
- M. Avci, Existence results for anisotropic discrete boundary value problems, Electron. J. Differential Equations 2016 (2016), Paper No. 148, 11 pp.
- M. Avci, On a nonlocal Neumann problem in Orlicz-Sobolev spaces, J. Nonlinear Funct. Anal. 2017 (2017), Article ID 42, 1-11. https://doi.org/10.23952/jnfa.2017.42
- M. Avci and A. Pankov, Nontrivial solutions of discrete nonlinear equations with variable exponent, J. Math. Anal. Appl. 431 (2015), no. 1, 22-33. https://doi.org/10.1016/j.jmaa.2015.05.056
- M. Avci and B. Suer, Existence results for some nonlocal problems involving variable exponent, J. Elliptic Parabolic Equations 2019 (2019). https://doi.org/10.1007/s41808-018-0032-3
- R. Ayazoglu, M. Avci, and N. T. Chung, Existence of solutions for nonlocal problems in Orlicz-Sobolev spaces via monotone method, Electron. J. Math. Anal. Appl. 4 (2016), no. 1, 63-73.
- P. Blomgren, T. F Chan, P. Mulet, and C. K. Wong, Total variation image restoration: numerical methods and extensions, in Proceedings of the International Conference on Image Processing, IEEE, 3 1997, 384-387.
-
M.-M. Boureanu and D. N. Udrea, Existence and multiplicity results for elliptic problems with p(
${\cdot}$ )-growth conditions, Nonlinear Anal. Real World Appl. 14 (2013), no. 4, 1829-1844. https://doi.org/10.1016/j.nonrwa.2012.12.001 -
B. Cekic, A. V. Kalinin, R. A. Mashiyev, and M. Avci,
$L^{p(x)}({\Omega})$ -estimates of vector fields and some applications to magnetostatics problems, J. Math. Anal. Appl. 389 (2012), no. 2, 838-851. https://doi.org/10.1016/j.jmaa.2011.12.029 - Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383-1406. https://doi.org/10.1137/050624522
- N. T. Chung, Three solutions for a class of nonlocal problems in Orlicz-Sobolev spaces, J. Korean Math. Soc. 50 (2013), no. 6, 1257-1269. https://doi.org/10.4134/jkms.2013.50.6.1257
- N. T. Chung, Multiple solutions for a nonlocal problem in Orlicz-Sobolev spaces, Ric. Mat. 63 (2014), no. 1, 169-182. https://doi.org/10.1007/s11587-013-0171-7
- N. T. Chung, Existence of solutions for a class of Kirchhoff type problems in Orlicz-Sobolev spaces, Ann. Polon. Math. 113 (2015), no. 3, 283-294. https://doi.org/10.4064/ap113-3-5
- Ph. Clement, M. G. Huidobro, R. Manasevich, and K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations 11 (2000), no. 1, 33-62. https://doi.org/10.1007/s005260050002
- F. J. S. A. Correa and G. M. Figueiredo, On a p-Kirchhoff equation via Krasnoselskii's genus, Appl. Math. Lett. 22 (2009), no. 6, 819-822. https://doi.org/10.1016/j.aml.2008.06.042
- D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical Harmonic Analysis, Birkhauser/Springer, Heidelberg, 2013. https://doi.org/10.1007/978-3-0348-0548-3
- L. Diening, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. https://doi.org/10.1016/0022-247X(74)90025-0
- X. Fan, On nonlocal p(x)-Laplacian Dirichlet problems, Nonlinear Anal. 72 (2010), no. 7-8, 3314-3323. https://doi.org/10.1016/j.na.2009.12.012
- F. Fang and Z. Tan, Existence and multiplicity of solutions for a class of quasilinear elliptic equations: an Orlicz-Sobolev space setting, J. Math. Anal. Appl. 389 (2012), no. 1, 420-428. https://doi.org/10.1016/j.jmaa.2011.11.078
- M. Garcia-Huidobro, V. K. Le, R. Manasevich, and K. Schmitt, On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting, NoDEA Nonlinear Differential Equations Appl. 6 (1999), no. 2, 207-225. https://doi.org/10.1007/s000300050073
- B. Ge, On an eigenvalue problem with variable exponents and sign-changing potential, Electron. J. Qual. Theory Differ. Equ. 2015 (2015), Paper No. 92, 10 pp. https://doi.org/10.14232/ejqtde.2015.1.92
- S. Heidarkhani, G. Caristi, and M. Ferrara, Perturbed Kirchhoff-type Neumann problems in Orlicz-Sobolev spaces, Comput. Math. Appl. 71 (2016), no. 10, 2008-2019. https://doi.org/10.1016/j.camwa.2016.03.019
- H. Hudzik, On generalized Orlicz-Sobolev space, Funct. Approximatio Comment. Math. 4 (1976), 37-51.
-
O. Kovacik and J. Rakosnik, On spaces
$L^{p(x)}$ and$W^{k,p(x)}$ , Czechoslovak Math. J. 41(116) (1991), no. 4, 592-618. - M. Mihailescu and V. Radulescu, Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2087-2111. https://doi.org/10.5802/aif.2407
- M. Mihailescu and V. Radulescu, Eigenvalue problems associated with nonhomogeneous differential operators in Orlicz-Sobolev spaces, Anal. Appl. (Singap.) 6 (2008), no. 1, 83-98. https://doi.org/10.1142/S0219530508001067
- M. Mihailescu, V. Radulescu, and D. Repovs, On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting, J. Math. Pures Appl. (9) 93 (2010), no. 2, 132-148. https://doi.org/10.1016/j.matpur.2009.06.004
- J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983. https://doi.org/10.1007/BFb0072210
- M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc., New York, 1991.
- M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000. https://doi.org/10.1007/BFb0104029
- A. K. Souayah, On a class of nonhomogenous quasilinear problems in Orlicz-Sobolev spaces, Opuscula Math. 32 (2012), no. 4, 731-750. https://doi.org/10.7494/OpMath.2012.32.4.731
- Z. Yucedag, M. Avci, and R. Mashiyev, On an elliptic system of p(x)-Kirchhoff-type under Neumann boundary condition, Math. Model. Anal. 17 (2012), no. 2, 161-170. https://doi.org/10.3846/13926292.2012.655788
- V. V. Zhikov, Differential Equations, Differ. Equ. 33 (1997), no. 1, 108-115; translated from Differ. Uravn. 33 (1997), no. 1, 107-114, 143.