DOI QR코드

DOI QR Code

A Study on the Fatigue Analysis of Glass Fiber Reinforced Plastics with Linear and Nonlinear Multi-Scale Material Modeling

선형과 비선형 다중 스케일 재료 모델링을 활용한 유리섬유 강화 플라스틱의 피로해석 연구

  • Kim, Young-Man (Department of Mechanical Engineering, Chungnam National Univ.) ;
  • Kim, Yong-Hwan (Department of Mechanical Engineering, Chungnam National Univ.)
  • 김영만 (충남대학교 기계공학부) ;
  • 김용환 (충남대학교 기계공학부)
  • Received : 2019.11.10
  • Accepted : 2020.01.18
  • Published : 2020.04.30

Abstract

The fatigue characteristics of glass fiber reinforced plastic (GFRP) composites were studied under repeated loads using the finite element method (FEM). To realize the material characteristics of GFRP composites, Digimat, a mean-field homogenization tool, was employed. Additionally, the micro-structures and material models of GFRP composites were defined with it to predict the fatigue behavior of composites more realistically. Specifically, the fatigue characteristics of polybutylene terephthalate with short fiber fractions of 30wt% were investigated with respect to fiber orientation, stress ratio, and thickness. The injection analysis was conducted using Moldflow software to obtain the information on fiber orientations. It was mapped over FEM concerned with fatigue specimens. LS-DYNA, a typical finite element commercial software, was used in the coupled analysis of Digimat to calculate the stress amplitude of composites. FEMFAT software consisting of various numerical material models was used to predict the fatigue life. The results of coupled analysis of linear and nonlinear material models of Digimat were analyzed to identify the fatigue characteristics of GFRP composites using FEMFAT. Neuber's rule was applied to the linear material model to analyze the fatigue behavior in LCF regimen. Additionally, to evaluate the morphological and mechanical structure of GFRP composites, the coupled and fatigue analysis were conducted in terms of thickness.

본 연구를 통해 다양한 분야에서 재료의 역학적 거동을 해석하고 예측하는 방법인 유한요소법(Finite Element Method, FEM)을 활용하여 유리섬유 강화 플라스틱 복합재료의 피로 특성을 분석하였다. 이를 구현하기 위해 평균장 균질화(mean-field homogenization) 이론을 활용하여 고분자, 고무, 금속 등과 같은 다양한 복합재료를 위한 선형, 비선형 다중스케일 재료 모델링 프로그램인 Digimat을 이용하였다. 이를 통해 유리섬유 강화 플라스틱 복합재료의 미세 구조와 재료 모델을 정의하여 더욱 현실적으로 고분자 복합재료의 피로 거동을 예측하고자 한다. 참고문헌을 통해 시험 온도, 섬유배향, 응력비, 시편의 두께 등 다양한 변수들을 사용하여 30wt%의 단 섬유 질량 비율을 갖는 폴리부틸렌 텔레프탈레이트(polybutylene terephthalate, PBT)의 고분자 복합재료의 피로 특성을 조사하였다. 섬유배향 정보를 계산하기 위한 사출해석은 Moldflow 소프트웨어을 활용하였으며, 이를 유한요소 피로시편 모델에 매핑하였다. 대표적인 유한요소 상용 소프트웨어인 LS-DYNA는 섬유배향에 따른 고분자 복합재료의 응력 진폭을 계산하기 위해 Digimat과의 연성해석에 활용하였다. 그리고 수치해석을 활용한 피로수명 해석을 위해 다양한 재료 모델들로 구성된 FEMFAT 소프트웨어를 사용하였다. 선형 재료 모델의 연성해석 결과는 높은 응력 진폭에 의한 재료의 국부적 비선형이 발생하는 LCF 영역의 피로 특성을 연구하기 위해 Neuber 법칙을 사용하여 재료의 피로 거동을 분석하였으며, 비선형 재료 모델의 연성해석 결과 역시 FEMFAT을 활용한 피로수명 해석에 사용되었다. 연성해석과 피로해석의 결과는 섬유배향에 따라 유한요소 시편의 두께 방향으로 분석하여 유리섬유 강화 플라스틱 복합재료의 형태학적, 역학적 구조에 대해서 평가하였다.

Keywords

References

  1. Adam, L., Depouhon, A., Assaker, R. (2008) Multi-scale Modeling of Crash & Failure of Reinforced Plastics Parts with Digimat to LS-DYNA Interface, 7th European LS-DYNA Conference.
  2. Bernasconi, A., Cosmi, F. (2008) Local Anisotropy Analysis of Injection Moulded Fibre Reinforced Polymer Composites, Compos. Sci. Technol, 68, pp.2574-2581. https://doi.org/10.1016/j.compscitech.2008.05.022
  3. Bernasconi, A., Davoli, P., Basile, A. (2007) Effect of Fibre Orientation on the Fatigue behaviour of a Short Glass Fibre Reinforced Polyamide-6, Int. J. Fatigue, 29(2), pp.199-208. https://doi.org/10.1016/j.ijfatigue.2006.04.001
  4. Biron, M. (2013) Thermoplastics and Thermoplastic Composites 2nd Edition, William Andrew, Massachusetts, p.1164.
  5. Brunbauer, J., Mosenbacher, A. (2014) Fundamental Influences on Quasistatic and Cyclic Material Behavior of Short Glass Fiber Reinforced Polyamide Illustrated on Microscopic Scale, J. Appl. Polym. Sci., 131(19), 40842(1-14).
  6. Cahn, R.W., Haasen, P., Kramer, E.J. (1996) Materials Science and Technology: Plastic Deformation and Fracture of Aaterials: A Comprehensive Treatment Volume 6, Wiley-VCH Weinheim, p.710.
  7. De Monte, M., Moosbrugger, E. (2010), Influence of Temperature and Thickness on the Off-Axis behaviour of Short Glass Fibre Reinforced Polyamide 6.6-Quasi-static Loading, Compos. Part A: Appl. Sci. & Manuf., 41(7), pp.859-871. https://doi.org/10.1016/j.compositesa.2010.02.018
  8. Digimat (2018) User's Manual, Ex-stream Engineering.
  9. Doghri, I., Ouaar, A. (2003) Homogenization of Two-Phase Elasto-Plastic Composite Materials and Structures-Study of Tangent Operators, Cyclic Plasticity and Numerical Algorithms, Int. J. Solids Struct., 40, pp.1681-1712. https://doi.org/10.1016/S0020-7683(03)00013-1
  10. Eshelby, J. (1957) The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems, Proc. Roy. Soc. London Ser. A, 241, pp.376-396. https://doi.org/10.1098/rspa.1957.0133
  11. FEMFAT 4.7 (2007) Theory Manual. St. Valentin.
  12. Gaier, C., Dannbauer, H., Werkhausen, A. (2007) Fatigue Life Prediction of Short Fiber Reinforced Plastic Components, NAFEMS Seminar Simulating Composite Materials and Structures.
  13. Grove, D., Kim, H. (1995) Fatigue Behavior of Long and Short Glass Reinforced Thermoplastics, J. Mater. & Manuf., 104(5), pp.450-456.
  14. Kammouna, S., Doghri, I., Adam, L., Robert, G., Delannay, L. (2011) First Pseudo-Grain Failure Model for Inelastic Composites with Misaligned Short Fibers, Compos.: Part A, 42, pp.1892-1902. https://doi.org/10.1016/j.compositesa.2011.08.013
  15. Kammouna, S., Doghri, I., Adam, L., Robert, G., Delannay, L. (2015) Micromechanical Modeling of the Progressive Failure in Short Glass-Fiber Reinforced Thermoplastics-First Pseudo-Grain Damage Model, Compos.: Part A, 73, pp.166-175.
  16. Krairi, A., Doghri, I., Robert, G. (2016) Multiscale High Cycle Fatigue Models for Neat and Short Fiber Reinforced Thermoplastic Polymers, Int. J. Fatigue, 92, pp.179-192. https://doi.org/10.1016/j.ijfatigue.2016.06.029
  17. Kujawski, D., Teo, J.L.K. (2017) A Generalization of Neuber's Rule for Numerical Applications, 2nd Int. Conf. Struct. Integr.
  18. Lavengood, R.E., Gulbransen, L. (1969) The Effect of Aspect Ratio on the Fatigue Life of Short Boron Fiber Reinforced Composites, Polym. Eng. Sci., 9, pp.365-369. https://doi.org/10.1002/pen.760090509
  19. Linn, J. (2005) The Folgar-Tucker Model as a Differential Algebraic System for Fiber Orientation Calculation, ITWM, 75, pp.2-4.
  20. Marohni, T., Basanb, R., Franulovic, M. (2015) Evaluation of the Possibility of Estimating Cyclic Stress-Strain Parameters and Curves from Monotonic Properties of Steels, Pro. Eng., 101, pp.277-284. https://doi.org/10.1016/j.proeng.2015.02.029
  21. Mallick, P.K. (1993) Fiber-Reinforced Composites: Materials, Manufacturing and Design 3rd Edition, CRC Press, Florida, p.638.
  22. Miner, M.A. (1945) Cumulative Damage in Fatigue. J. Appl. Mech-Trans. ASME, 12(3), A159-64. https://doi.org/10.1115/1.4009458
  23. Mori, T., Tanaka, K. (1973) Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions, Acta. Metall., 21(5), pp.571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  24. Mortazavian, S., Fatemi, A. (2015) Fatigue Behavior and Modeling of Short Fiber Reinforced Polymer Composites Including Anisotropy and Temperature Effects, Int. J. Fatigue, 77, pp.12-27. https://doi.org/10.1016/j.ijfatigue.2015.02.020
  25. Park, J.M., Kim, H.D. (2015) Properties of Randomly Oriented Chopped E-glass Reinforced Unsaturated Polyester based Resin Composite, Korean Soc. Dyers. & Finish., 9, pp. 165-174.
  26. Ramberg, W., Osgood, W. (1943) Description of Stress-Strain Curves by Three Parameters, Technical Note No. 902.
  27. Rolland, H., Saintier, N., Gobert, G. (2016) Fatigue Mechanisms Description in Short Glass Fibre Reinforced Thermoplastic by Microtomographic Observations, Proc. Struct. Integr., 2, pp.301-308. https://doi.org/10.1016/j.prostr.2016.06.039