DOI QR코드

DOI QR Code

Coupled Eulerian-Lagrangian 기법을 이용한 선박의 수중사면 충돌해석 1 : 해석모델의 개발

Vessel Collision Analysis of an Underwater Slope using Coupled Eulerian-Lagrangian Scheme 1: Development of Analysis Model

  • 이계희 (목포해양대학교 해양건설공학과)
  • Lee, Gyehee (Dept. of Ocean Civil Engineering, Mokpo National Maritime Univ.)
  • 투고 : 2019.09.26
  • 심사 : 2019.10.24
  • 발행 : 2020.02.29

초록

본 논문에서는 인공섬 형식의 방호공을 구성하는 수중사면에 선박이 충돌하는 경우 발생하는 선박과 지반의 거동을 해석하기 위한 모델을 Coupled Eulerian-Lagrangian(CEL) 기법을 이용하여 구성하였다. 충돌에서 발생하는 지반의 전단파괴를 포함하는 대변형을 고려하기 위하여 지반과 해수는 Eulerian 영역으로 구성하고 충돌체를 Lagrangian 영역으로 구성되었다. 해석의 효율성을 향상시키기 위해서 mass scali기법을 충돌체의 모델링에 도입하였으며, 지반은 Eulerian영역에서 Eulerian Volume Fraction(EVF)값을 설정하여 구성하였다. 작성된 모델의 적용성을 검증하기 위하여 동적관입앵커에 대한 해석을 수행하였다. 또한 컨테이너선의 외부형상에 따라 고체요소로 모델링된 선수가 수중사면에 충돌하는 경우의 해석을 수행하고, 그 때 발생하는 변위, 속도, 소산에너지 등의 거동을 평가하였다. 그 결과로 매개변수해석에 대한 추가적인 연구 필요성이 도출되었다.

In this study, the behaviors of a vessel and the ground during the vessel impacting an underwater slope that is part of an artificial protective island are analyzed using the coupled Eulerian-Lagrangian scheme. To consider the large deformation including the shear failure of soil, the Eulerian domain is used to model the ground and water, while the impacting objects are modeled as the Lagrangian domain. For efficiency, the mass scaling scheme is applied to the modeling of the impacting objects, and the ground is modeled by setting the Eulerian volume fraction values. To verify the applicability of the constructed model, a dynamic penetration anchor problem is analyzed. The impacting vessel is modeled using solid elements following the external shape of a container ship, and an analysis of a collision on the slope is performed. As a result, collision behaviors such as displacement, velocity, and dissipation energy are estimated, and the necessity of a parametric study as further research is established.

키워드

참고문헌

  1. AASHTO (2009) Guide Specfications and Commentary for Vessel Collision Design of Highway Bridges, American Association of State Highway and Transportation Officials, 2nd Edition.
  2. Bojanowski, C. (2014) Numerical Modeling of Large Deformations in Soil Structure Interaction Problems using FE, EFG, SPH, and MM-ALE Formulations, Arch. Appl. Mech., 84, pp.743-755. https://doi.org/10.1007/s00419-014-0830-5
  3. Kim, Y.H., Jeong, S.S. (2014) Analysis of Dynamically Penetrating Anchor based on Coupled Eulerian-Lagrangian (CEL) Method, J. Korean Soc. Civil Eng., 34(3), pp.895-906. https://doi.org/10.12652/Ksce.2014.34.3.0895
  4. Ko, J.Y., Jeong, S.S., Kim, J.H. (2017) Application of a Coupled Eulerian-Lagrangian Technique on Constructability Problems of Site on Very Soft Soil, Appl. Sci., 7(10), pp.1080-1095. https://doi.org/10.3390/app7101080
  5. Kulak, R.F., Bojanowski, C. (2011) Modeling of Cone Penetration Test using SPH and MM-ALE Approaches, In 8th European LS-DYNA User Conf., Strasbourg, pp.1-10.
  6. Lee, G.H. (2019) Vessel Collision Analysis to the Underwater Slope using Coupled Eulerian-Lagrangian Scheme 2 : Parametric Study, J. Comput. Struct. Eng. Inst. Korea, 33(1). pp. 25-33. https://doi.org/10.7734/COSEIK.2020.33.1.25
  7. Livermore Software Technology Corporation (LSTC) (2017) LS-DYNA Keyword User's Manual, Livermore Software Technology Corporation, LS-DYNA R10.0.
  8. Na, S.H., Jang, I.S., Kwon, O.S., Lee, S.H. (2014) Study on Pullout Behavior of Embedded Suction Anchors in Sand using ALE (Arbitrary Lagrangian Eulerian) Technique, J. Korean Soc. Civil Eng., 34(1), pp.167-173. https://doi.org/10.12652/Ksce.2014.34.1.0167
  9. Qiu, G., Henke, S., Grabe, J.G. (2011) Application of a Coupled Eulerian-Lagrangian approach on Geomechanical Problems Involving Large Deformations, Comput. & Geotech., 38(1), pp.30-39. https://doi.org/10.1016/j.compgeo.2010.09.002
  10. SIMULIA (2012) Abaqus 6.12 Analysis User's Manual, SIMULIA.