DOI QR코드

DOI QR Code

복합 TiN-Al2O3 합성과 수소투과도 특성 평가

Composite TiN-Al2O3 Syntheses and Hydrogen Permeability Characteristics Evaluation

  • 조경원 (한국교통대학교 공동실험실습관) ;
  • 이영환 (한국교통대학교 화공신소재고분자공학부 신소재공학전공) ;
  • 한정흠 (한국교통대학교 화공신소재고분자공학부 신소재공학전공) ;
  • 유제선 (한국교통대학교 화공신소재고분자공학부 신소재공학전공) ;
  • 홍태환 (한국교통대학교 화공신소재고분자공학부 신소재공학전공)
  • CHO, KYOUNG-WON (Center for Research Facilities Korea National University of Transportation) ;
  • LEE, YOUNG-HWAN (Department of Materials Science & Engineering, Korea National University of Transportation) ;
  • HAN, JEONG-HEUM (Department of Materials Science & Engineering, Korea National University of Transportation) ;
  • YU, JE-SEON (Department of Materials Science & Engineering, Korea National University of Transportation) ;
  • HONG, TAE-WHAN (Department of Materials Science & Engineering, Korea National University of Transportation)
  • 투고 : 2020.02.13
  • 심사 : 2020.04.30
  • 발행 : 2020.04.30

초록

To utilize hydrogen energy, high-yield, high-purity hydrogen needs to be produced; therefore, hydrogen separation membrane studies are being conducted. The membrane reactor that fabricates hydrogen needs to have high hydrogen permeability, selective permeability, heatresistant and a stable mechanical membrane. Dense membranes of Pd and Pd alloys are usually used, but these have drawbacks associated with high cost and durability. Therefore, many researchers have studied replacing Pd and Pd alloys. Dense TiN membrane is highly selective and can separate high-purity hydrogen. The porous alumina has a high permeation rate but low selectivity; therefore, separating high-purity hydrogen is difficult. To overcome this drawback, the two materials are combined as composite reclamations to produce a separation membrane with a high penetration rate and high selectivity. Accordingly, TiN-alumina was manufactured using a high-energy ball mill. The TiN-alumina membrane was characterized by X-ray diffraction analysis, scanning electron microscopy, and energy dispersive spectroscopy. The hydrogen permeability of the TiN-alumina membrane was estimated by a Sievert-type hydrogen permeation membrane apparatus. Due to the change in the diffusion mechanism, the transmittance value was lower than that of the general TiN ceramic separator.

키워드

참고문헌

  1. S. Seok, D. Y. Lee, and Y. B. Kim, "Hydrogen permeation properties of Ni-based amorphous alloys membrane", Trans. of the Korean Hydrogen and New Energy Society, Vol. 19, No. 1, 2008, pp. 35-40. Retrieved from http://www.koreascience.or.kr/article/JAKO200818259610109.page.
  2. S. N. Paglieri, N. K. Pal, M. D. Dolan, S. M. Kim, W. M. Chien, J. Lamb, D. Chandra, K. M. Hubbard, and D. P. Moore, "Hydrogen permeability, thermal stability and hydrogen embrittlement of Ni-Nb-Zr and Ni-Nb-Ta-Zr amorphous alloy membranes", J. Membr. Sci., Vol. 378, No. 1-2, 2011, pp. 42-50, doi: https://doi.org/10.1016/j.memsci.2011.04.049.
  3. B. H. Howard, R. P. Killmeyer, K. S. Rothenberger, A. V. Cugini, B. D. Morreale, R. M. Enick, and F. Bustamante, "Hydrogen permeance of palladium-copperalloy membranes over a wide range of temperatures and pressures", J. Membr. Sci., Vol. 241, No. 2, 2004, pp. 207-218, doi: https://doi.org/10.1016/j.memsci.2004.04.031.
  4. L. Zhang, G. Yang, and W. Fang, "Regenerated cellulose membrane from cuoxam/zincoxene blend", J. Membr. Sci., Vol. 56, No. 2, 1991, pp. 207-215, doi: https://doi.org/10.1016/S0376-7388(00)80809-1.
  5. S. J. Lee, S. M. Yang, and S. B. Park, "Synthesis of palladium impregnated alumina membrane for hydrogen separation", J. Membr. Sci., Vol. 96, No. 3, 1994, pp. 223-232, doi: https://doi.org/10.1016/0376-7388(94)00133-2.
  6. S. M. Kim, Y. J. Lee, K. W. Jun, J. Y. Park, and H. S. Potdar, "Synthesis of thermo-stable high surface area alumina powder from sol-gel derived boehmite", Materials Chemistry and Physics, Vol. 104, No. 1, 2007, pp. 56-61, doi: https://doi.org/10.1016/j.matchemphys.2007.02.044.
  7. J. Li, X. Wang, L. Wang, Y. Hao, Y. Huang, Y. Zhang, X. Sun, and X. Liu, "Preparation of alumina membrane from aluminium chloride", J. Membr. Sci., Vol. 275, No. 1-2, 2006, pp. 6-11, doi: https://doi.org/10.1016/j.memsci.2005.08.011.
  8. J. Li, L. Gao, and J. Guo, "Mechanical properties and electrical conductivity of TiN-Al2O3 nanocomposites", J. of the European Ceramic Society, Vol. 23, No. 1, 2003, pp. 69-74, doi: https://doi.org/10.1016/S0955-2219(02)00089-4.
  9. K. I. Kim and T. W. Hong, "Hydrogen permeation of TiN-graphene membrane by hot press sintering (HPS) process", Solid State Ionics, Vol. 225, 2012, pp. 699-702, doi: https://doi.org/10.1016/j.ssi.2012.06.003.
  10. Serra, E., E. Rigal, and G. Benamati. "Hydrogen and deuterium permeation measurements on the double-wall tubes material for the water-cooled Pb-17Li DEMO blanket." Fusion engineering and design 49 (2000): 675-679. Retrieved from https://www.sciencedirect.com/science/article/pii/S0920379600003641. https://doi.org/10.1016/S0920-3796(00)00364-1
  11. M. Gitterman, "Mean first passage time for anomalous diffusion", Phys. Rev. E, Vol. 62. 2000, pp. 6065-6070, doi: https://doi.org/10.1103/PhysRevE.62.6065.
  12. K. I. Kim, S. W. Yoo, and T. W. Hong, "Fabrications and evaluations of hydrogen permeation on TIN-M(Co, NI) composite membrane", Trans. of the Korean Hydrogen and new Energy Society, Vol. 21, No. 4, 2010, pp. 264-270. Retrieved from http://www.koreascience.or.kr/article/JAKO201033359738589.page.
  13. S. Seok, K. W. Cho, and T. W. Hong, "The evaluation of hydrogenation properties on MgHx-$Fe_2O_3$ composite by mechanical alloying", Trans. of the Korean Hydrogen and New Energy Society, Vol. 18, No. 1, 2007, pp. 26-31. Retrieved from http://www.koreascience.or.kr/article/JAKO200721036737380.page.
  14. M. R. Othman and J. Kim, "Permeation characteristics of $H_2,\;N_2$ and $CO_2$ in a binary mixture across meso-porous $Al_2O_3$ and $Pd-Al_2O_3$ asymmetric composites", Micro. Meso. Materials, Vol. 112, No. 1-3, 2008, pp. 403-410, doi: https://doi.org/10.1016/j.micromeso.2007.10.016.