DOI QR코드

DOI QR Code

산지지역 수재해 대응을 위한 레이더 기반 돌발성 호우 위험성 사전 탐지 기술 적용성 평가

Applicability evaluation of radar-based sudden downpour risk prediction technique for flash flood disaster in a mountainous area

  • 윤성심 (한국건설기술연구원 국토보전연구본부) ;
  • 손경환 (환경부 한강홍수통제소 수자원정보센터)
  • Yoon, Seongsim (Korea Institute of Civil Engineering and Building Technology) ;
  • Son, Kyung-Hwan (Water Resources Information Center, Han River Flood Control Office, Ministry of Environment)
  • 투고 : 20200230
  • 심사 : 2020.04.07
  • 발행 : 2020.04.30

초록

국토의 70% 이상이 산지인 우리나라의 경우 산지지역의 돌발호우로 인한 수재해의 위험이 상시 존재한다. 본 연구에서는 환경부 비슬산 강우레이더 관측 영역의 산지지역에 발생한 돌발성 호우 사례를 대상으로 레이더 기반 돌발성 호우 사전 예측 방법을 적용하여, 그 활용성을 살펴보았다. 비슬산 강우레이더의 3차원 레이더 반사도, 강우강도, 도플러 풍속을 이용하여, 산지지역에서 발생한 8개의 국지적 호우 사례를 선정한 후 적란운 대류세포의 조기탐지, 탐지된 대류세포의 자동 추적, 해당 대류세포가 발달하여 돌발성 호우를 유발할 수 있는 가능성을 판단하는 위험도 정보를 산출하였다. 사례적용 결과, 대기 중에 돌발호우로 발달할 수 있는 대류세포의 최초 탐지시점 및 위치, 소용돌이도 발생여부에 따라 판정된 위험도 수준 및 발생시점, 위치를 확인할 수 있었다. 특히, 지상강우관측망으로는 좁은 영역에 국지적으로 발달하는 호우를 탐지하는데 한계가 있음을 확인하였다. 또한, 위험도 정보를 획득한 시점에서 최대 강우강도가 발생할 때까지 최소 10분에서 최대 65분 정도의 시간을 확보함으로써 레이더 기반의 돌발성 호우 사전 예측기법은 산지지역에서 호우로 인한 산지홍수, 고립사고 방지를 위한 사전정보로 활용성이 있을 것으로 판단되었다.

There is always a risk of water disasters due to sudden storms in mountainous regions in Korea, which is more than 70% of the country's land. In this study, a radar-based risk prediction technique for sudden downpour is applied in the mountainous region and is evaluated for its applicability using Mt. Biseul rain radar. Eight local heavy rain events in mountain regions are selected and the information was calculated such as early detection of cumulonimbus convective cells, automatic detection of convective cells, and risk index of detected convective cells using the three-dimensional radar reflectivity, rainfall intensity, and doppler wind speed. As a result, it was possible to confirm the initial detection timing and location of convective cells that may develop as a localized heavy rain, and the magnitude and location of the risk determined according to whether or not vortices were generated. In particular, it was confirmed that the ground rain gauge network has limitations in detecting heavy rains that develop locally in a narrow area. Besides, it is possible to secure a time of at least 10 minutes to a maximum of 65 minutes until the maximum rainfall intensity occurs at the time of obtaining the risk information. Therefore, it would be useful as information to prevent flash flooding disaster and marooned accidents caused by heavy rain in the mountainous area using this technique.

키워드

참고문헌

  1. Byers, H.R., and Braham, R.R. (1949). The thunderstorm. U.S. Government Printing Office, U.S., p. 287.
  2. Dixon, M.J., and Wiener, G. (1993). "TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting-A radar-based methodology." Journal of Atmospheric and Oceanic Technology, Vol. 10, pp. 785-797. https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
  3. Eblen, L.H., Ladd, J.W., and Hicks, T.M. (1990). Severe thunderstorm forecasting. NOAA-TM-NWS-SR-130, National Weather Service Forecast Office, USA, p.51.
  4. Han, L., Fu, S.X., Zhao, L.F., Zheng, Y.Z., Wang, H.Q. and Lin, Y.J. (2009). "3D convective storm identification, tracking, and forecasting-An enhanced TITAN algorithm." Journal of Atmospheric and Oceanic Technology, Vol. 26, pp. 719-732. https://doi.org/10.1175/2008JTECHA1084.1
  5. Jung, S.H., Lee, G.W., Kim, H.W, Kuk, B.J. (2011). "Development of convective cell identification and tracking algorithm using 3-dimensional radar reflectivity fields." Atmosphere, KOMES, Vol. 21, No. 3, pp. 243-256. https://doi.org/10.14191/ATMOS.2011.21.3.243
  6. Jung, S.P, Kwon, T.Y., and Han, S.O. (2014). "Thermodynamic characteristics associated with localized torrential rainfall events in the middle west region of Korean peninsula." Atmosphere, KOMES, Vol. 24, No. 4, pp. 457-470. https://doi.org/10.14191/Atmos.2014.24.4.457
  7. Kim, J.H., and Bae, D.H. (2007). "Development of Korea flash flood guidance system: (I) Theory and system design." Journal of Civil Engineering, KSCE, Vol. 27, No. B, pp. 237-243.
  8. Korean Meteorological Association (KOMES) (2006). Development of Monitoring and Prediction Technology for Severe Weather (Heavy Rainfall) over the Korean Peninsula. 11-1360055-000177-10, KMA, p.1130.
  9. Lakshmanan, V., Rabin, R., and DeBrunner, V. (2003). "Multiscale storm identification and forecast." Journal of Atmospheric Research, Vol. 67, pp.367-380. https://doi.org/10.1016/S0169-8095(03)00068-1
  10. Lee, B J., Choi, S.M., Yoon, S.S., and Choi, Y.J. (2016). "The evaluation of TOPLATS Land surface model application for forecasting flash flood in mountainous areas." Journal of Water Resources Association, Vol. 49, No. 1, pp. 19-28. https://doi.org/10.3741/JKWRA.2016.49.1.19
  11. Nakakita, E., Yamabe, H., and Yamaguchi, K. (2010). "Earlier detection of the origin of very localized torrential rainfall." Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), JSCE, Vol. 54, pp. 343-348.
  12. Nakakita, E., Nishiwaki, R., and Yamaguchi, K. (2012). Research on anticipation of risk of a baby cell of guerrilla-heavy rain by analysis in terms of vorticity that uses doppler velocity. Annuals of Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan, No.55B, pp. 527-530.
  13. Nakakita, E., Nishiwaki, R., and Yamaguchi, K. (2014). A study on development and upgrading of early detection and risk prediction system of guerrilla heavy-rainfall. Annuals of Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan, No. 57B, pp. 289-298.
  14. National Disaster Management Institute (NDMI) (2009). Analysis of Rainfall Distribution and Flash Flood Index in Small Mountainous Catchments. NIDP-PR-200911-01, National Disaster Management Institute, p.111.
  15. Rasmussen, E.N., and Blanchard, D.O. (1998). "A baseline climatology of sounding-derived supercell and tornado forecasting parameters." Weather Forecasting, Vol. 13, pp. 1148-1164. https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2
  16. Rinehart, R.E., and Garvey, E.T. (1978). "Three-dimensional storm motion detection by conventional weather radar." Nature, Vol. 273, pp. 287-289. https://doi.org/10.1038/273287a0
  17. Rotunno, R. (1981). "On the evolution of thunderstorm rotation." Monthly Weather Review, Vol. 109, No. 3, pp.577-586. https://doi.org/10.1175/1520-0493(1981)109<0577:OTEOTR>2.0.CO;2
  18. Weisman, M.L., and Klemp, J.B. (1982). "The dependence of numerically simulated convective storms on vertical wind shear and buoyancy." Monthly Weather Review, Vol. 110, pp. 504-520. https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2
  19. Wilhelmson, R.B., and Klemp, J.B. (1978). "A numerical study of storm splitting that leads to long-lived storms." Journal of the Atmospheric Sciences, Vol. 35, No. 10, pp. 1974-1986. https://doi.org/10.1175/1520-0469(1978)035<1974:ANSOSS>2.0.CO;2
  20. Yoon, S.H, Choi, S.M., Lee, B.J., and Choi, Y. J. (2015). "A study on statistical methods for the development of flash flood index." Journal of Korean Society of Hazard Mitigation, Vol. 15, No. 6, pp. 189-197. https://doi.org/10.9798/KOSHAM.2015.15.6.189
  21. Yoon, S.S. (2011). Development of optimal radar rainfall estimation with orographic effect and urban flood forecasting application technique. Ph. D. dissertation, Sejong University, Korea, pp. 21-24.
  22. Yoon, S.S., Nakakita, E., Nishiwaki, R., and Sato, H. (2016). "Research on radar-based risk prediction of sudden downpour in urban area: case study of the metropolitan area." Journal of Water Resources Association, Vol. 49, No. 9, pp. 749-759.