DOI QR코드

DOI QR Code

달리기 속도와 경사가 하지관절의 생체역학에 미치는 영향

The Effect of Running Speed and Slope on the Lower Extremity Biomechanics

  • 김종빈 (한국체육대학교 모션이노베이션센터)
  • Kim, Jongbin (Motion Innovation Center, Korea National Sport University)
  • 투고 : 2020.03.06
  • 심사 : 2020.04.20
  • 발행 : 2020.04.28

초록

본 연구는 달리기 시 속도와 경사변화가 하지관절의 생체역학적 요인에 미치는 영향을 보고자 한다. 이를 위해 20대 성인남성 15명이 트레드밀에서 2.7, 3.3 m/s와 -9°, -6°, 0°, 6°, 9°로 달리기를 실시하였고, 속도와 경사 변화에 따른 주행특성(보장, 보빈도), 생체역학적 변인(발목, 무릎, 엉덩관절의 가동범위, 모멘트, 관절파워), 지면반력(수직지면반력, 부하율, 제동력, 추진력)을 측정하였다. 연구결과, 주행특성은 오르막 달리기(UR)가 내리막 달리기(DR)에 비해 크게 나타났다(p<.05). 하지관절의 가동범위와 수직지면반력은 UR에서 크게 나타났고(p<.05), 하지관절의 모멘트와 제동력, 추진력, 부하율은 DR에서 크게 나타났다(p<.05). 관절파워는 발목관절은 DR에서 크고, 엉덩관절에서는 UR이 크게 나타났다(p<.05). 이러한 결과로부터 3.3m/s의 속도로 DR을 달리는 경우에서 발목관절 부상의 영향이 클 것으로 예상된다.

This study analyzes the effects of changes in running velocity and slope on the biomechanical factors of the lower limb joints. For this purpose, 15 adult males in their 20s ran according to changes in running speed (2.7, 3.3 m/s) and slope ( -9°, -6°, 0°, 6°, 9°) on the treadmill, and their running characteristics (stride length, stride frequency). The range of motion of the lower limb joint and the vertical ground reaction force were greater in UR (p <.05), and the moment of the lower limb joint, braking force, thrust and load factor was large in DR (p <.05). In joint power, the ankle joint was greater in DR, and hip joint was greater in the UR (p <.05). These results show that the injuries of the ankle joint will be greater than other cases when running DR at a speed of 3.3 m/s.

키워드

참고문헌

  1. Ministry of Culture, Sports and Tourism. (2019). National Life Sports Survey, Seoul.
  2. M. Anbarian & H. Esmaeili. (2016). Effects of running-induced fatigue on plantar pressure distribution in novice runners with different foot types. Gait & posture, 48, 52-56. https://doi.org/10.1016/j.gaitpost.2016.04.029
  3. S. H. Shin, H. K. Lee & M. S. Kwon. (2008). Correlation between lower extremities joint moment and joint angle according to the different walking speeds. Korean Journal of Sport Biomechanics, 18(2), 75-83. https://doi.org/10.5103/KJSB.2008.18.2.075
  4. Y. H. Son, H. J. Cho & J. C. Park (2015). A research study on health-oriented consumer behavior. Consumer Studies, 26(6), 179-206.
  5. ACSM. (2006). ACSM's Guidelines for Exercise Testing and Prescription. Philadelphia: Lippincott Williams and Wilkins.
  6. Ministry of Culture, Sports and Tourism (2019), Sports Safety Foundation, 2015 Sports Safety Accident Survey, Seoul.
  7. C. Johnston & J. Taunton. (2003). Preventing running injuries. Practical approach for family doctors. Canadian Family Physician, 49, 1101-1109.
  8. R. Van Gent, R. D. Siem, M. Van Middelkoop, A. Van Os, S. Bierma-Zeinstra & B. Koes. (2007). Incidence and determinants of lower extremity running injuries in long distance runners: A systematic review. British Journal of Sports Medicine, 41, 469-480. https://doi.org/10.1136/bjsm.2006.033548
  9. P. R. Cavanagh & M. A. Lafortune. (1980). Ground reaction forces in distance running. Journal of biomechanics, 13(5), 397-406. https://doi.org/10.1016/0021-9290(80)90033-0
  10. J. S. Ryu. (2019). Gender Center of Pressure (CoP) complexity pattern with increasing running speed. Korean Journal of Exercise Mechanics, 29(4), 247-254.
  11. D. Rosenbaum, T. Engl & A. Nagel. (2016). Effects of a fatiguing long-distance run on plantar loading during barefoot walking and shod running. Footwear Science, 8(3), 129-137. https://doi.org/10.1080/19424280.2016.1157103
  12. R. B. Kim, S. C. Lee & Y. W. Jin. (2000). Kinematics: Kinematic analysis of lower limb joints according to changes in speed during walking. Korean Journal of Physical Education, 39(4), 675-687.
  13. M. J. Milliron & P. R. Cavanagh. (1990). Sagittal plane kinematics of the lower extremity during distance running. Biomechanics of distance running, 65, 105.
  14. B. Akpinar, E. Thorhauer, S. Tashman, J. J. Irrgang, F. H. Fu & W. J. Anderst. (2019). Tibiofemoral Cartilage Contact Differences Between Level Walking and Downhill Running. Orthopaedic journal of sports medicine, 7(4).
  15. J. T. Han, J. D. Lee & S. S. Bae. (2005). Analysis of three-dimensional motion of the lower limb joints according to the inclination angle when walking on an uphill slope of a normal person. Journal of the Korean Physical Therapy Society, 17(4), 633-650.
  16. Park et al. (2007). Carbon monoxide dehydrogenase in mycobacteria possesses a nitric oxide dehydrogenase activity. Biochemical and biophysical research communications, 362(2), 449-453. https://doi.org/10.1016/j.bbrc.2007.08.011
  17. C. L. Hamill, T. E. Clarke, E. C. Frederick, L. J. Goodyear & E. T. Howley. (1984). Effects of grade running on kinematics and impact force. Medicine and Science in Sports and Exercise, 16(2), 184.
  18. J. S. Ryu. (2005). The shock of downhill running and the kinematic features of body joints. Journal of Korean Society of Exercise Mechanics, 15(4), 117-129.
  19. J. S. Gottschall & R. Kram. (2005). Ground reaction forces during downhill and uphill running. Journal of biomechanics, 38(3), 445-452. https://doi.org/10.1016/j.jbiomech.2004.04.023
  20. S. K. Park, H. M. Jeon, W. K. Lam, D. Stefanyshyn & J. S. Ryu. (2019). The effects of downhill slope on kinematics and kinetics of the lower extremity joints during running. Gait & posture, 68, 181-186. https://doi.org/10.1016/j.gaitpost.2018.11.007
  21. J. B. Kim, S. Ha, S. Park, S., Yoon, J. S. Ryu, & S. K Park (2019). Biomechanical comparison of elder runner's body characteristics and lower limb joints. Journal of Korean Society of Exercise Mechanics, 29(3), 145-155.
  22. J. S. Gottschall & R. Kram. (2005). Ground reaction forces during downhill and uphill running. Journal of biomechanics, 38(3), 445-452 https://doi.org/10.1016/j.jbiomech.2004.04.023
  23. G. Telhan, J. R. Franz, J. Dicharry, R. P. Wilder, P. O. Riley & D. C. Kerrigan. (2010). Lower limb joint kinetics during moderately sloped running. Journal of athletic training, 45(1), 16-21. https://doi.org/10.4085/1062-6050-45.1.16
  24. T. J. Roberts & R. A. Belliveau. (2005). Sources of mechanical power for uphill running in humans. Journal of Experimental Biology, 208(10), 1963-1970. https://doi.org/10.1242/jeb.01555
  25. S. C. Swanson & G. E. Caldwell. (2000). An integrated biomechanical analysis of high speed incline and level treadmill running. Medicine & Science in Sports & Exercise, 32(6), 1146-1155. https://doi.org/10.1097/00005768-200006000-00018
  26. J. Mizrahi, O. Verbitsky & E. Isakov. (2001). Fatigue-induced changes in decline running. Clinical biomechanics, 16(3), 207-212. https://doi.org/10.1016/S0268-0033(00)00091-7
  27. T. Lussiana, N. Fabre, K. Hebert-Losier & L. Mourot. (2013). Effect of slope and footwear on running economy and kinematics. Scandinavian Journal of Medicine & Science in Sports, 23(4), e246-e253.
  28. P. DeVita, L. Janshen, P. Rider, S. Solnik & T. Hortobagyi. (2008). Muscle work is biased toward energy generation over dissipation in non-level running. Journal of biomechanics, 41(16), 3354-3359. https://doi.org/10.1016/j.jbiomech.2008.09.024