DOI QR코드

DOI QR Code

Open-source robot platform providing offline personalized advertisements

오프라인 맞춤형 광고 제공을 위한 오픈소스 로봇 플랫폼

  • Kim, Young-Gi (Dept. of Computer Science and Engineering, Seoul National University of Science and Technology) ;
  • Ryu, Geon-Hee (Electronic and Information Commnucation Engineering, Daejeon University) ;
  • Hwang, Eui-Song (Electronic and Information Commnucation Engineering, Daejeon University) ;
  • Lee, Byeong-Ho (Electronic and Information Commnucation Engineering, Daejeon University) ;
  • Yoo, Jeong-Ki (Electronic and Information Commnucation Engineering, Daejeon University)
  • 김영기 (서울과학기술대학교 컴퓨터공학과) ;
  • 류건희 (대전대학교 전자정보통신공학과) ;
  • 황의송 (대전대학교 전자정보통신공학과) ;
  • 이병호 (대전대학교 전자정보통신공학과) ;
  • 유정기 (대전대학교 전자정보통신공학과)
  • Received : 2020.03.11
  • Accepted : 2020.04.20
  • Published : 2020.04.28

Abstract

The performance of the personalized product recommendation system for offline shopping malls is poor compared with the one using online environment information since it is difficult to obtain visitors' characteristic information. In this paper, a mobile robot platform is suggested capable of recommending personalized advertisement using customers' sex and age information provided by Face API of MS Azure Cloud service. The performance of the developed robot is verified through locomotion experiments, and the performance of API used for our robot is tested using sampled images from open Asian FAce Dataset (AFAD). The developed robot could be effective in marketing by providing personalized advertisements at offline shopping malls.

오프라인 쇼핑몰은 온라인과 비교하여 고객들의 방문 정보를 얻기 어렵기 때문에 맞춤형 제품 추천 시스템의 수준이 온라인과 비교하면 빈약하다. 본 논문에서는 MS Azure의 Face API를 이용해 오프라인 쇼핑몰을 방문하는 고객들의 얼굴을 인식하여 얻은 성별과 나이 정보를 이용해 맞춤형 광고를 제공하는 이동형 로봇 플랫폼을 개발하였다. 개발한 로봇은 구동 실험을 통해 프로세스가 정상 동작하는 것을 보였고, 오픈 얼굴 데이터셋(AFAD)을 사용해 API의 성능을 검증하였다. 개발된 로봇은 오프라인 쇼핑몰의 방문 고객층을 실시간으로 파악하여 맞춤형 광고를 제공함으로써 효율적인 마케팅 효과를 기대할 수 있다.

Keywords

References

  1. O. S. Ban. (2019). A message of temptation to drive purchases, online personalized advertising. Journal of KISO, 37(5), 26-28.
  2. N. G. Kim & S. B. Jeong. (2016). A Study on Customized Brand Recommendation based on Customer Behavior for Off-line Shopping Malls. Journal of Information Technology Applications & Management, 23(4), 55-70. DOI : 10.21219/jitam.2016.23.4.055
  3. Y. H. Choi & S. Y. Lee. (2006). Users' Moving Patterns Analysis for Personalized Product Recommendation in Offline Shopping Malls. Journal of Korean Institute of Intelligent Systems, 16(2), 185-190. DOI : 10.5391/JKIIS.2006.16.2.185
  4. S. S. Kim. (2019). A Study on Product Search Service using Feature Point Information based on Image. Journal of Convergence for Information Technology, 9(9), 20-26. DOI: 10.22156/CS4SMB.2019.9.9.020
  5. R. Jung & Y. H. Ban. (2017). Classification of Robot Act in Human-Robot Interaction -Focused on Service Robot. Korean Society of Design Science, 62-63.
  6. S. H. Kim. (2018). The Present and Future of Intelligent Robots. Korean Information Technology Society, 16(1), 7-12.
  7. B. K. Choi, J. U. Lee, S. K. Park & J. H. Lee. (2020). A Model-Based Interface to Cloud Services for Intelligent Service Robots. Software and data engineering, 9(1), 1-10.
  8. Y. J. Cho. (2019). History and Implications of ICT Convergence Service Robot in Korea. Korea Robotics Society, 16(2), 7-13.
  9. B. H. Baek & H. Kim. (2017). Intelligent Robot Industry, Industry Trend and Policy Direction. The Institute of Electronics and Information Engineers, 44(9), 16-26.
  10. M. K. Park & Y. J. Yoo. (2020). CES2020, Global Trend Study of Artificial Intelligence+Robot Technology. The Journal of The Korean Institute of Communication Sciences, 37(2), 59-63.
  11. Microsoft. (2019). Microsoft Azure. (Onlie) https://azure.microsoft.com/ko-kr/services/cognitive-services/face/#overview
  12. H. I. Kim, J. Y. Moon & J. Y. Park. (2018). Research Trends for Deep Learning-Based High-Performance Face Recognition Technology. Electronics and Telecommunications Trends, 33(4), 43-53. DOI : 10.22648/ETRI.2018.J.330405
  13. https://www.ros.org/
  14. Y. S. Pyo, H. C. Cho, R. W. Jung & T. H. Lim. (2017). ROS robot programming. Rubypaper.
  15. A, Martinez& E, Fernandez. (2013). Learning ROS forrobotics programming. Packt Publishing Ltd.
  16. https://www.electroschematics.com/hc-sr04-datasheet/
  17. H. B. Kim, Y. K. Kim & S. H. Han. (2018). Optimal Design of Autonomous Walking Robot based on Janssen Mechanism Using Ultrasonic Sensor. Korean CDE Journal, 24(2), 2-11.
  18. M. Labbe. (2020). rtabmap ros-ROS wiki. (Online). http://wiki.ros.org/rtabmap_ros
  19. Z. Niu, M. Zhou, L. Wang, X. Gao & G. Hua. (2016). Ordinal regression with multiple output cnn for age estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition. (pp. 4920-4928). DOI: 10.1109/cvpr.2016.532