DOI QR코드

DOI QR Code

Survey on Fusarium Mycotoxin Contamination in Oat, Sorghum, Adlay, and Proso Millet during the Harvest Season in Korea

귀리, 수수, 율무, 기장의 수확기에 발생하는 Fusarium 곰팡이독소 오염도 조사

  • Lee, Mi Jeong (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Wee, Chi-Do (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Ham, Hyenheui (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Choi, Jung-Hye (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Baek, Ji Sun (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lim, Soo Bin (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Theresa (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Jeom-Soon (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jang, Ja Yeong (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
  • 이미정 (국립농업과학원 유해생물팀) ;
  • 위치도 (국립농업과학원 유해생물팀) ;
  • 함현희 (국립농업과학원 작물보호과) ;
  • 최정혜 (국립농업과학원 유해생물팀) ;
  • 백지선 (국립농업과학원 유해생물팀) ;
  • 임수빈 (국립농업과학원 유해생물팀) ;
  • 이데레사 (국립농업과학원 유해생물팀) ;
  • 김점순 (국립농업과학원 유해생물팀) ;
  • 장자영 (국립농업과학원 유해생물팀)
  • Received : 2019.09.24
  • Accepted : 2019.12.11
  • Published : 2020.02.28

Abstract

A total of 244 cereal samples (oat, sorghum, adlay, and proso millet) were collected from fields to examine the contamination of Fusarium mycotoxins in cereals during harvest season in 2017 and 2018. The contamination levels of deoxynivalenol (DON), nivalenol (NIV), and zearalenone (ZEA) were analyzed individually by using the immunoaffinity column clean-up method with ultra performance liquid chromatography, and fumonisins (FUM) were analyzed by using the QuEChERS method with liquid chromatography-mass spectrometry. Highest level of NIV contamination (120.0-3277.0 mg/kg) was observed in oat samples among the analyzed cereals. In the adlay samples, DON contamination was the highest (maximum level 730.0 ㎍/kg). The proso millet samples had a high frequency of detection of NIV and ZEA (61.5% and 57.9%, respectively), but the levels were low (average detection level of NIV, 75.6 ㎍/kg, for ZEA, 21.5 ㎍/kg). Among the cereal samples, sorghum had the highest contamination frequency of DON, ZEA, and FUM, and the co-occurrence of Fusarium mycotoxin was 70.0%, which was higher than the average of 29.9%. In order to safely manage Fusarium mycotoxin levels in cereals, continuous research on the development of contamination prevention technologies together with monitoring of mycotoxin contamination is needed.

잡곡의 Fusarium 곰팡이독소의 오염 조사를 위해, 총 244개 잡곡시료(귀리, 수수, 율무, 기장)를 수확기 포장에서 2017년과 2018년에 수집하였다. 데옥시니발레놀(DON), 니발레놀(NIV), 제랄레논(ZEA)은 면역친화컬럼법과 UPLC를 이용하여 분석하였으며, 푸모니신(FUM)은 QuEChERS 방법과 LC-MS를 이용하여 분석하였다. 잡곡 시료 중 귀리의 NIV 오염수준은 120.0-3277.0 mg/kg로 다른 잡곡에 비해 가장 높았다. 율무에서는 DON이 최대 730.0 ㎍/kg 검출되었다. 기장의 NIV과 ZEA의 오염빈도는 각각 61.5%와 57.9%로 높았으나 평균 오염량은 각각 75.6 ㎍/kg과 21.5 ㎍/kg로 안전한 수준이었다. 잡곡 시료 중 수수는 DON, ZEA, FUM의 오염빈도가 가장 높았으며, 2 종 이상의 Fusarium 독소 중복 오염률이 70.0%로 잡곡 평균 29.9%에 비해 높았다. 잡곡 재배포장에서 Fusarium 독소오염을 안전하게 관리하기 위하여 독소 발생 모니터링과 함께 오염예방기술 개발 연구가 수행되어야 할 필요가 있다.

Keywords

References

  1. Boudra, H., Le, Bars P., Le, Bras J., Thermostability of ochratoxin A in wheat under two moisture conditions. Appl. Environ. Microbiol., 61, 1156-1158 (1995). https://doi.org/10.1128/aem.61.3.1156-1158.1995
  2. Bullerman, L.B., Bianchini, A., Stability of mycotoxins during food processing. Int. J. Food Microbiol., 119, 140-146 (2007). https://doi.org/10.1016/j.ijfoodmicro.2007.07.035
  3. Jackson, L.S., Hlywka, J.J., Senthil, K.R., Bullerman, L.B., Musser, S.M., Effects of time, temperature, and pH on the stability of fumonisin B1 in an aqueous model system. J. Agric. Food Chem., 44, 906-912 (1996). https://doi.org/10.1021/jf950364o
  4. Ryu D., Hanna M.A., Bullerman L.B., Stability of zearalenone during extrusion of corn grits. J. Food Prot., 62, 1482-1484 (1999). https://doi.org/10.4315/0362-028X-62.12.1482
  5. Health Canada. Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, 2009. CH Information document of Health Canada's proposed maximum limits (standards) for the presence of the mycotoxin ochratoxin A in foods.
  6. European Commission. Commission regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuff. Official Journal of the European Union, L 364, 5-24 (2006).
  7. U.S. Food and Drug Administration, 2011. Mycotoxin Regulatory Guidance. National Grain and Feed Association: Washington. DC, USA, pp. 1-9.
  8. Cole, R.J., Cox, R.H., 1981. Handbook of Toxic Fungal Metabolites. Academic Press, New York.
  9. Filtenborg, O., Frisvad, J.C., Thrance, U., Moulds in food spoilage. Int. J. Food Microbiol., 33, 85-102 (1996). https://doi.org/10.1016/0168-1605(96)01153-1
  10. Choi, H.W., Hong, S.K., Kim, W.G., Lee, Y.K., Diversity and pathogenicity of Fusarium species associated with head blight of Job's tears. Kor. J. Mycol., 39, 217-222 (2011). https://doi.org/10.4489/KJM.2010.39.3.217
  11. Wei, W., Jiao-Jie, M., Chuan-Chuan, Y., Xiao-Hui, L., Hong-Ry, Jiang., Bing, S., Feng-Qin, Li., Simultaneous determination of masked deoxynivalenol and some important type B trichothecens in Chinese corn kernels and corn-based products by Ultra-performance liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem., 60, 11638-11646 (2012). https://doi.org/10.1021/jf3038133
  12. Arnold, D., McGuire, P., Nera, E., Karpinski, K., Bickis, M., Zawidzka, A., Fernie, S., Vesonder, R., The toxicity of orally administered deoxynivalenol (vomitoxin) in rats and mice. Food Chem, Toxicol., 24, 935-941 (1986). https://doi.org/10.1016/0278-6915(86)90321-2
  13. Mirocha, C., Christensen, C., Nelson, G., 1971. Microbial toxins. In F-2 (Zearalenone) Estrogenic Mycotoxin from Fusarium, 7rd Ed. (Kadis, A., Ciegler, A. and Ajl, S.J. eds.) Academic Press, New York, pp. 107-138
  14. Yoshizawa, T., Yanashita, A., Luo, Y., Fumonisin occurrence in corn from high- and low-risk areas for human esophageal cancer in China. Appl. Environ. Microbiol., 60, 1626-1629 (1994). https://doi.org/10.1128/aem.60.5.1626-1629.1994
  15. Lee, T., Lee, S., Lee, J.-H., Yun, J.-C., Oh, K.-S., Natural occurrence of mycotoxin and fungi in Korean rice. Res. Plant Dis., 18, 261-267 (2012). https://doi.org/10.5423/RPD.2012.18.4.261
  16. Pleadin, J., Vahcic, N., Persi, N., Sevelj, D., Markov, K., Frece, J., Fusarium mycotoxins'occurrence in cereals harvested from Croatian fields. Food Control, 32, 49-54 (2013). https://doi.org/10.1016/j.foodcont.2012.12.002
  17. Calori-Domingues, M.A., Bernardi, C.M., Nardin, M.S., de Souza, G.V., Dos Santos, F.G., Stein, Mde A., Gloria, E.M., Dias, C.T., de Camargo, A.C., Co-occurrence and distribution of deoxynivalenol, nivalenol and zearalenone in wheat from Brazil. Food Addit. Contam. part B Surveill., 9, 142-151 (2016). https://doi.org/10.1080/19393210.2016.1152598
  18. Ji, F., Xu, J., Liu, X., Yin, X., Shi, J., Natural occurrence of deoxynivalenol and zearalenone in wheat from Jiangsu province, China. Food Chem., 157, 393-397 (2014). https://doi.org/10.1016/j.foodchem.2014.02.058
  19. Chilaka, C.A., De Boevre, M.M., Atanda, O.O., De Saeger, S., Occurrence of Fusarium mycotoxins in Cereals crops and processed products (Ogi) from Nigeria. Toxins., 8, 342, (2016). https://doi.org/10.3390/toxins8110342
  20. Kim, D.-H., Jang, H.-S., Choi, G.-I., Kim, H.-J., Kim, H.-J, Kim, H.-L., Cho, H.-J., Lee, C., Occurrence of mycotoxins in Korean grains and their simultaneous analysis. Korean J. Food SCI. Technol., 45, 111-119 (2013). https://doi.org/10.9721/KJFST.2013.45.1.111
  21. Lee, T., Lee, S., Kim, L.-H., Ryu, J.-G., Occurrence of fungi and Fusarium mycotoxins in the rice samples from rice processing complexes. Res. Plant Dis., 20, 289-294 (2014). https://doi.org/10.5423/RPD.2014.20.4.289
  22. Ministry of Food and Drug Safety, 2016. Korea Food Code (Test Methods). Korea, notice 2016-154.
  23. Choi, J.-H., Lee, S., Nah, J.-Y., Kim, H.-Y., Paek, J.-S., Lee, S., Ham, H., Hong, S.K., Yun, S.-H., Lee, T., Species composition of and fumonisin production by the Fusarium fujikuroi species complex isolated from Korean cereals. Int. J. Food Microbiol., 267, 62-69 (2018). https://doi.org/10.1016/j.ijfoodmicro.2017.12.006
  24. Lehotay, S.J., Matovska, K., Lightfield, A.R., Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. J. AOAC Int., 88, 615-629 (2005). https://doi.org/10.1093/jaoac/88.2.615
  25. Ryu, J.-G., Lee, S., Lee, S.-H., Son, S.-W., Nam, Y.J, Kim, M., Lee, T., Yun, J.-C., Natural occurrence of Fusarium head blight and its mycotoxins in 2010-harvested barley and wheat grains in Korea. Res. Plant Dis., 17, 272-279 (2011). https://doi.org/10.5423/RPD.2011.17.3.272
  26. Ministry of Food and Drug Safety, 2016. Guidelines on standard procedures for preparing test methods, including food. Korea, notice 2017-57.
  27. Kim, J.-K., Kim, Y.-S., Lee, C.-H., Seo, M.Y., Jang, M.K., Ku, E.-J., Park, K.-H., Yoon, M.-H., A study on the safety of mycotoxins in grains and commonly consumed foods. J. Food Hyg. Saf., 32, 470-476 (2017). https://doi.org/10.13103/JFHS.2017.32.6.470
  28. Yang, Y., Lee, H. H., Kim, A.G., Ryu, K.Y., Choi, S.Y., Seo, D.R., Seo, K.W., Cho, B.S., Survey of mycotoxin contamination in grains and grain products. J. Food Hyg. Saf., 34, 205-211 (2019). https://doi.org/10.13103/JFHS.2019.34.2.205
  29. Karlovsky, P., Suman, M., Berthiller, F., De Meester, J., Eisenbrand, G., Perrin, I., Oswald, IP., Speijer, G., Chiodini, A., Recker, T., Dussort, P., Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res., 32, 179-205 (2016). https://doi.org/10.1007/s12550-016-0257-7
  30. Zheng, Y., Hossen, S.M., Sago, Y., Yoshida, M., Nakagawa, H., Nagashima, H., Okadome, H., Nakajima, T., Kushiro, M., Effects of milling on the content of deoxynivalneol, nivalenol, and zearalenone in Japanese wheat. Food Control, 40, 193-197 (2014). https://doi.org/10.1016/j.foodcont.2013.11.043
  31. Lee, T., Lee, S.-H., Lee, S.-H., Shin, J.Y., Yun, J.-C., Lee, Y.-W., Ryu, J.G., Occurrence of Fusarium mycotoxins in rice and its milling by-products in Korea. J. Food Prot., 74, 1169-1174 (2011). https://doi.org/10.4315/0362-028X.JFP-10-564
  32. Birzele, B., Prenge, A., Kramer, J., Deoxynivalenol and ochratoxin A in German wheat and changes of level in relation to storage parameters. Food Addit. Contam., 17, 1027-1035 (2000). https://doi.org/10.1080/02652030050207828
  33. Mateo, J.J., Mateo, R., Jimenez, M., Accumulation of type A trichothecenes in maize, wheat and rice by Fusarium sporotrichoides isolates under diverse culture conditions. Int. J. Food Microbiol., 72, 115-123 (2002). https://doi.org/10.1016/S0168-1605(01)00625-0
  34. Miller, J.D., Fungi and mycotoxins in grain: implications for stored products research. J. Stored Prod Res., 31, 1-6 (1995). https://doi.org/10.1016/0022-474X(94)00039-V
  35. Cano-Sancho, G., Ramos, A.J., Marin, S., Sanchis, V., Occurrence of fumonisins in Catalonia (Spain) and an exposure assessment of specific population groups. Food Addit. Contam. Part A., 29, 799-808 (2012). https://doi.org/10.1080/19440049.2011.644813
  36. Yazdanpanah, H., Shephard, G.S., Marasas, W.F.O., Westhuizen, V.D., Rahimian, H., Safavi, S.N., Eskandari, P.E., Ghiasian, S.A., Human dietary exposure to fumonisin B1 from Iranian maize harvested during 1998-2002. J. Mycopathologia., 161, 395-401 (2006). https://doi.org/10.1007/s11046-006-0017-x
  37. Korea Meteorological Administraction, (2019, September 19). Ground observation data, Retrieved from http://www.weather.go.kr/weather/climate/past_cal.jsp
  38. Ibanez-Vea, M., Lizarrage, E., Gonzalez-Penas, E., Cerain A.L., Co-occurrence of type-A and type-B trichothecenes in barley from a northern region of Spain. Food Control, 25, 81-88 (2012). https://doi.org/10.1016/j.foodcont.2011.10.028
  39. Pleadin, J., Frece, J., Lesic, T., Zadravec, M., Vahcic, N., Staver, M.M., Markov, K., Deoxynivalenol and zearalenone in unprocessed cereals and soybean from different cultivation regions in Croatia. Food Addit. Contam. Part B Surveill., 10, 268-274 (2017).
  40. Liu, Y., Jiang, Y., Li, R., Pang, M., Liu, Y., Dong, J., Natural occurrence of fumonisins B1 and B2 in maize from eight provinces of China in 2014. Food Addit. Contam. Part B Surveill., 10, 113-117 (2017). https://doi.org/10.1080/19393210.2017.1280541
  41. Yoshizawa, T., and Morooka, M., Studies on the toxic substances in infected cereals. IV. Acute toxicities of new trichothecene mycotoxins: deoxynivalenol and its monoacetate. J. Food Hyg. Soc. Jpn., 15, 261-268 (1974). https://doi.org/10.3358/shokueishi.15.261
  42. Lee, S.-H., Lee, J., Nam, Y.J., Lee, S., Ryu, J.-G., Lee, T., Population structure of Fusarium graminearum form maize and rice in 2009 in Korea. Plant Pathol. J., 26, 321-327 (2010). https://doi.org/10.5423/PPJ.2010.26.4.321
  43. Shin, S., Son, J.-H., Park, J.-C., Kim, K.H., Yoon, Y., Cheong, Y.-K., Kim, K.-H., Hyun, J.-N., Park, C.S., Dill-Macky R., Kang C.-S.: Comparative pathogenicity of Fusarium graminearum isolates from wheat kernels in Korea. Plant Pathol. J., 34, 347-355 (2018). https://doi.org/10.5423/PPJ.OA.01.2018.0013
  44. Smith M.C., Nadec S., Coton E., Hymery N., Natural cooccurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins, 8, 94 (2016). https://doi.org/10.3390/toxins8040094
  45. Ok H.E., Choi S.-W., Chung S.H., Kang Y.-W., Kim D.-S., Chun H.S., Natural occurrence of type-B trichothecene mycotoxins in Korean cereal-based products. Food Addit. Contam. Part B Surveill., 4, 132-140 (2011). https://doi.org/10.1080/19393210.2011.567380
  46. Kouadio J.H., Dano S.D., Moukha S., Mobio T.A., Creppy E.E., Effect of combinations of Fusarium mycotoxins on the inhibition of macromolecular synthesis, malondialdehyde levels, DNA methylation and fragmentation, and viabillity in Caco-2 cells, Toxicon, 49, 306-317 (2007). https://doi.org/10.1016/j.toxicon.2006.09.029
  47. Kouadio, J.H., Moukha, S., Brou, K., Gnakri, D., Modulation of fumonisins B1 toxic action-induced by zearlenone in human intestianl cells Coco-2. Int. J. Sci. Technol. Res., 2, 315-320 (2013).
  48. Wan, L.Y.L., Turner, P.C., El-Nezami, H., Individual and combined cytotoxic effects of Fusarium toxins (deoxynivalenol, nivalenol, zearalenone and fumonisins B1 on swine jejunal epithelial cells. Food Chem. Toxicol., 57, 276-283 (2013). https://doi.org/10.1016/j.fct.2013.03.034
  49. National Institute of Food and Drug Safety Evaluation, 2016. Risk Assessment of Mycotoxins. Publication Registration Number (11-1471057-000206-01), pp. 357.