DOI QR코드

DOI QR Code

A Study on the Build of Equipment Predictive Maintenance Solutions Based on On-device Edge Computer

  • Received : 2020.03.24
  • Accepted : 2020.04.16
  • Published : 2020.04.29

Abstract

In this paper we propose an uses on-device-based edge computing technology and big data analysis methods through the use of on-device-based edge computing technology and analysis of big data, which are distributed computing paradigms that introduce computations and storage devices where necessary to solve problems such as transmission delays that occur when data is transmitted to central centers and processed in current general smart factories. However, even if edge computing-based technology is applied in practice, the increase in devices on the network edge will result in large amounts of data being transferred to the data center, resulting in the network band reaching its limits, which, despite the improvement of network technology, does not guarantee acceptable transfer speeds and response times, which are critical requirements for many applications. It provides the basis for developing into an AI-based facility prediction conservation analysis tool that can apply deep learning suitable for big data in the future by supporting intelligent facility management that can support productivity growth through research that can be applied to the field of facility preservation and smart factory industry with integrated hardware technology that can accommodate these requirements and factory management and control technology.

본 연구에서는 현재 일반적인 스마트 팩토리에서 데이터 전송에 사용하는 중앙 집중형 시스템에서 발생하는 데이터를 중앙의 센터까지 전송, 처리할 때 발셍하는 전송 지연 등의 문제 해결을 위하여 필요한 곳에 연산과 저장 장치를 도입하는 분산 컴퓨팅 패러다임 (Distributed Computing Paradigm)인 온-디바이스 (On-Device) 기반 에지 컴퓨팅 (Edge Computing) 기술과 빅데이터 분석 기술 및 활용 방법의 연구를 통하여 설비 고장 등을 예지하여 가동율을 높일 수 있는 산업현장의 설비관리에 활용되는 솔루션을 제안한다. 그러나 에지 컴퓨팅 기반의 기술이 실제 적용되더라도 네트워크 에지에서 장치의 증가는 많은 양의 데이터가 데이터 센터로 전달되어 네트워크 대역이 한계치에 이르게 되어 네트워크 기술의 향상에도 데이터 센터는 수많은 응용에서 중요한 요건이 되는 수용 가능한 전송 속도와 응답 시간을 보장하지 못하게 된다. 이와 같은 요구조건을 수용할 수 있는 일체형 하드웨어 기술과 공장관리 및 제어 기술을 적용한 설비보존 및 스마트 팩토리 산업 분야에 적용할 수 있는 연구를 통하여 생산성 증대를 지원할 수 있는 지능적 설비관리를 지원하도록 하여 추후 빅데이터에 적합한 딥러닝을 적용할 수 있는 인공지능 기반 설비 예지 보전 분석 도구로 발전할 수 있는 기반을 제공한다.

Keywords

References

  1. Kyu-Teak Lee, "Smart Factory Industrial R & D Strategy", Ministry of Trade, Industry and Energy, http://www.krnet.or.kr/board/data/dprogram/1924 /B21-%C0%CC%B1%D4%C5%C3.pdf, 6. 2015
  2. Tao, F., Cheng, Y., Da Xu, L., Zhang, L., and Li, B. H.,"CCIoT-CMfg: Cloud Computing and Internet of Things-Based Cloud Manufacturing Service System", IEEE Transactions on Industrial Informatics, 10(2), pp.1435-1442, Feb. 2014. DOI: 10.1109/ TII.2014.2306383
  3. Avita Katal, Mohammad Wazid and R. H. Gouda, "Big data: Issues, challenges, tools and Good practices", 2013 Sixth International Conference on Contemporary Computing (IC3), Aug. 2013. DOI: 10.1109/IC3.2013.6612229
  4. Seung Taek Kim, "Considerations for the successful introduction of smart factories", Deloitte Korea Review, https://www2.deloitte.com/content/dam/Deloitte/kr/Documents/insights/deloitte-anjin-review/07/kr_insights_deloitte-anjin-review-07_05.pdf, pp.37-45, 2016.
  5. Won-Joong Jang, Sung-In Cho, Soo-Sang Kim, Gwang-Yong Gim, "A Study on the Implementation of Big Data Infrastructure in Smart Factory", Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology Vol.8, No.10, pp.11-23, Oct. 2018
  6. Apache Hadoop 3.2.1, https://hadoop.apache.org/docs/current/
  7. C.L. Philip Chen, Chun-Yang Zhang, "Data-intensive applications, challenges, techniques and technologies: A survey on Big Data", Information Sciences 275, pp314-347, 10 Aug. 2014, https://doi.org/10.1016/j.ins.2014.01.015
  8. "What is Big Data Platform?", Biz & Tech ICT Report, https://blog. skcc.com/1734, 4. 2014.
  9. Sun Jin Kim, Seok Ji Park, Nae Su Kim,, "A Trend Analysis of RFID/USN Industry", Electronics and Telecommunications Trends Vol.20 No.3, pp.43-55, 6. 2005
  10. "MQTT: the open road to internet of things", https://www.ekito.fr/people/mqtt-the-open-road-to-internet-of-things/
  11. Sun Hee Park, Jeong Ho Kim, Hyun Bae Ryu, "Implementation of public data contents using Big data Visualization technology - Map visualization technique", Journal of Digital Contents Society v.18 No.7, pp.1427 - 1434 30 Nov.. 2017. https://doi.org/10.9728/dcs.2017.18.7.1427
  12. Jun-Sung Park, Dong-Gie Kim, "New Generation Mobile Service: M2M Services and Technology," Comm. of KIISE, Vol.28, No.9, pp.28-39, Sep. 2010.
  13. Koojana Kuladinithi, Olaf Bergmann, Thomas Potsch, Markus Becker, Carmelita Gorg, "Implementation of CoAP and its Application in Transport Logistics", ReaearchGate, https://www.researchgate.net/publication/229057545, Jan. 2011