Abstract
In this paper we propose an uses on-device-based edge computing technology and big data analysis methods through the use of on-device-based edge computing technology and analysis of big data, which are distributed computing paradigms that introduce computations and storage devices where necessary to solve problems such as transmission delays that occur when data is transmitted to central centers and processed in current general smart factories. However, even if edge computing-based technology is applied in practice, the increase in devices on the network edge will result in large amounts of data being transferred to the data center, resulting in the network band reaching its limits, which, despite the improvement of network technology, does not guarantee acceptable transfer speeds and response times, which are critical requirements for many applications. It provides the basis for developing into an AI-based facility prediction conservation analysis tool that can apply deep learning suitable for big data in the future by supporting intelligent facility management that can support productivity growth through research that can be applied to the field of facility preservation and smart factory industry with integrated hardware technology that can accommodate these requirements and factory management and control technology.
본 연구에서는 현재 일반적인 스마트 팩토리에서 데이터 전송에 사용하는 중앙 집중형 시스템에서 발생하는 데이터를 중앙의 센터까지 전송, 처리할 때 발셍하는 전송 지연 등의 문제 해결을 위하여 필요한 곳에 연산과 저장 장치를 도입하는 분산 컴퓨팅 패러다임 (Distributed Computing Paradigm)인 온-디바이스 (On-Device) 기반 에지 컴퓨팅 (Edge Computing) 기술과 빅데이터 분석 기술 및 활용 방법의 연구를 통하여 설비 고장 등을 예지하여 가동율을 높일 수 있는 산업현장의 설비관리에 활용되는 솔루션을 제안한다. 그러나 에지 컴퓨팅 기반의 기술이 실제 적용되더라도 네트워크 에지에서 장치의 증가는 많은 양의 데이터가 데이터 센터로 전달되어 네트워크 대역이 한계치에 이르게 되어 네트워크 기술의 향상에도 데이터 센터는 수많은 응용에서 중요한 요건이 되는 수용 가능한 전송 속도와 응답 시간을 보장하지 못하게 된다. 이와 같은 요구조건을 수용할 수 있는 일체형 하드웨어 기술과 공장관리 및 제어 기술을 적용한 설비보존 및 스마트 팩토리 산업 분야에 적용할 수 있는 연구를 통하여 생산성 증대를 지원할 수 있는 지능적 설비관리를 지원하도록 하여 추후 빅데이터에 적합한 딥러닝을 적용할 수 있는 인공지능 기반 설비 예지 보전 분석 도구로 발전할 수 있는 기반을 제공한다.