DOI QR코드

DOI QR Code

CLIAM: Cloud Infrastructure Abnormal Monitoring using Machine Learning

  • 투고 : 2020.03.25
  • 심사 : 2020.04.09
  • 발행 : 2020.04.29

초록

초연결, 지능화로 대표되는 4차 산업혁명에서 클라우드컴퓨팅은 빅데이터와 인공지능 기술을 실현하기 위한 기술로 주목받고 있다. 클라우드컴퓨팅이 확산됨에 따라 이에 대한 다양한 위협 또한 증가하고 있다. 클라우드컴퓨팅 환경의 위협에 대응하기 위한 하나의 방법으로 본 논문에서는 IaaS 서비스 제공자가 클라이언트에게 할당한 자원에 대해 효과적인 모니터링 할 수 있는 방법을 제안한다. 본 논문에서 제안하는 방법은 할당된 클라우드 자원의 사용량을 ARIMA 알고리즘으로 모델링 하고, 평시 사용량과 추이 분석을 통해 비정상 상황을 식별할 수 있는 방법이다. 본 논문에서는 실험을 통해 제안한 방법을 이용하여 클라우드 서비스 제공자가 클라이언트 시스템에 대한 최소한의 권한으로 효과적으로 모니터링 할 수 있음을 보였다.

In the fourth industrial revolution represented by hyper-connected and intelligence, cloud computing is drawing attention as a technology to realize big data and artificial intelligence technologies. The proliferation of cloud computing has also increased the number of threats. In this paper, we propose one way to effectively monitor to the resources assigned to clients by the IaaS service provider. The method we propose in this paper is to model the use of resources allocated to cloud systems using ARIMA algorithm, and it identifies abnormal situations through the use and trend analysis. Through experiments, we have verified that the client service provider can effectively monitor using the proposed method within the minimum amount of access to the client systems.

키워드

참고문헌

  1. M. J. Lee, "Internet & Information Security:Big Data and the Utilization of Public Data", KISA, PP. 47-64, 2011
  2. hyun seok jeong, "A Study on the Application of Cloud Computing in the 4th Industrial Revolution", Korean Institute of Communications and Information Sciences, Vol. 44, No. 6, pp. 1213-1222, 2019, DOI:10.7840/kics.2019.44.6.1213
  3. Amazon AWS, https://aws.amazon.com/ko/
  4. Mocrosoft Azure, https://azure.microsoft.com/ko-kr/
  5. Cloud Services Information Protection Guide, KISA, pp. 1-98, 2011
  6. Cloud Computing Issues and Status, KEIT, pp. 1-48, 2011
  7. Cloud Computing, https://en.wikipedia.org/wiki/Cloud_computing
  8. Jihye Shin, "Regulations and the standard form contract for the user protection on the cloud computing service", HUFS Law Review, Vol. 40, No. 4 pp.117-140, 2016, DOI : 10.17257/hufslr.2016.40.4.117
  9. "Top Threats to Cloud Computing Plus: Industry Insights", Cloud Security Alliance, Dec. 2017
  10. Vyas, Giriraj, Sanjay Meena, and Pramendra Kumar. "Intrusion Detection Systems: A Modern Investigation." International Journal of Engineering, Management & Sciences (IJEMS) Vol. 1, No. 11, 2014.
  11. Alpaydin, "Ethem. Introduction to machine learning", MIT press, 2020.
  12. Patric R. Nicolas, "Scala for Machine Learning", Packt Publishing Ltd, Dec. 2015,
  13. Contreras, Javier, et al. "ARIMA models to predict next-day electricity prices." IEEE transactions on power systems, Vol. 18, No. 3, pp.1014-1020. 2003, DOI: 10.1109/TPWRS.2002.804943
  14. Yin-Goo Yim, Hyun-Wook Jin,."Analysis of Impact of Multi-core CPU Bandwidth in Docker Containers", KIISE Transactions on Computing Practices, Vol. 24, No. 12, pp.675-680, 2018, DOI: 10.5626/ktcp.2018.24.12.675
  15. D. Merkel, "Docker: Lightweight Linux Containers for Consistent Development and Deployment", Journal of Linux Journal 2014, Vol. 2014, No. 239, pp. 2, May. 2014.
  16. STRESS, https://www.cyberciti.biz/faq/stress-test-linux-unix-server-with-stress-ng/