DOI QR코드

DOI QR Code

Modeling and Simulation of LEACH Protocol to Analyze DEVS Kernel-models in Sensor Networks

  • Nam, Su Man (DuDu Information Technologies, Ltd.) ;
  • Kim, Hwa Soo (Graduate School of Information Communication and Technology, Ajou University)
  • Received : 2020.03.17
  • Accepted : 2020.04.16
  • Published : 2020.04.29

Abstract

Wireless sensor networks collect and analyze sensing data in a variety of environments without human intervention. The sensor network changes its lifetime depending on routing protocols initially installed. In addition, it is difficult to modify the routing path during operating the network because sensors must consume a lot of energy resource. It is important to measure the network performance through simulation before building the sensor network into the real field. This paper proposes a WSN model for a low-energy adaptive clustering hierarchy protocol using DEVS kernel models. The proposed model is implemented with the sub models (i.e. broadcast model and controlled model) of the kernel model. Experimental results indicate that the broadcast model based WSN model showed lower CPU resource usage and higher message delivery than the broadcast model.

무선 센서 네트워크는 인간의 개입 없이 다양한 환경에서 센싱 데이터를 수집하고 분석한다. 센서 네트워크는 초기에 설치된 라우팅 프로토콜들에 따라 네트워크 수명이 변경된다. 게다가, 네트워크가 운영 중에 라우팅 경로를 변경하기 위해 센서들은 많은 에너지를 소모해야 한다. 센서 네트워크를 실제 필드에 구축하기 전에 시뮬레이션을 통해 성능 측정하는 것은 중요하다. 본 논문은 DEVS 커널 모델들을 사용하여 저전력 적응형 클러스터링 계층 프로토콜을 위한 WSN 모델을 제안한다. 제안 모델은 커널 모델인 브로드캐스트 모델과 컨트롤드 모델로 구현된다. 실험 결과, 컨트롤드 기반의 WSN 모델은 데이터 전송 부분에서는 효율적이지만, 컨트롤드 모델에서 특정 모델을 선택하기 위해 CPU 사용량이 높은 것을 확인했다.

Keywords

References

  1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor networks: a survey," Comput. Networks, Vol. 38, No. 4, pp. 393-422, 2002. https://doi.org/10.1016/S1389-1286(01)00302-4
  2. I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos, "Wireless sensor network virtualization: A survey," IEEE Communications Surveys and Tutorials, Vol. 18, No. 1. pp. 553-576, Jan. 2016. https://doi.org/10.1109/COMST.2015.2412971
  3. S. M. Nam and T. H. Cho, "A fuzzy rule-based path configuration method for LEAP in sensor networks," Ad Hoc Networks, Vol. 31, pp. 63-79, 2015. https://doi.org/10.1016/j.adhoc.2015.03.005
  4. Y. Liu, Q. Wu, T. Zhao, Y. Tie, F. Bai, and M. Jin, "An improved energy-efficient routing protocol for wireless sensor networks," Sensors, Vol. 19, No. 20, Oct. 2019.
  5. W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, "An application-specific protocol architecture for wireless microsensor networks," IEEE Trans. Wirel. Commun., Vol. 1, No. 4, pp. 660-670, 2002. https://doi.org/10.1109/TWC.2002.804190
  6. B. H. Kim, Kim, "Sensor Network Simulator for Ubiquitous Application Development", Journal of KIISE : Computing Practices and Letters, Vol. 13, No. 6, pp. 358-370, 2007.
  7. P. Levis, N. Lee, M. Welsh, and D. Culler, "TOSSIM: Accurate and scalable simulation of entire TinyOS applications," SenSys'03 Proc. First Int. Conf. Embed. Networked Sens. Syst., pp. 126-137, 2003.
  8. B. L. Titzer, D. K. Lee, and J. Palsberg, "Avrora: Scalable sensor network simulation with precise timing," 2005 4th Int. Symp. Inf. Process. Sens. Networks, IPSN 2005, Vol. 2005, pp. 477-482, 2005.
  9. Y. Van Tendeloo and H. Vangheluwe, "Introduction to Parallel DEVS Modelling and Simulation," in Proceedings of the Model-Driven Approaches for Simulation Engineering Symposium, 2018.
  10. T. G. Kim and B. P. Zeigler, "DEVS FORMALISM: HIERARCHICAL, MODULAR SYSTEMS SPECIFICATION IN AN OBJECT ORIENTED FRAMEWORK.," in Winter Simulation Conference Proceedings, 1987, pp. 559-566.
  11. B. P. Zeigler, "Hierarchical, Modular Discrete-Event Modeling in an Object-Oriented Environment," Simulation, vol. 49, no. 5, pp. 219-230, 1987. https://doi.org/10.1177/003754978704900506
  12. B. P. Zeigler, Object-oriented simulation with hierarchical, modular models: intelligent agents and endomorphic systems. Academic press, 2014.
  13. S. M. Nam and T. H. Cho, "Context-Aware Architecture for Probabilistic Voting-based Filtering Scheme in Sensor Networks," IEEE Trans. Mob. Comput., Vol. 16, No. 10, pp. 2751-2763, 2017. https://doi.org/10.1109/TMC.2016.2641219
  14. T. Antoine-Santoni et al., "DEVS-WSN: A discrete event approach for Wireless Sensor Network simulation," AICCSA 08-6th IEEE/ACS Int. Conf. Comput. Syst. Appl., pp. 3189-3200, 2009.
  15. B. Qela, G. Wainer, and H. Mouftah, "Simulation of large wireless sensor networks using cell-DEVS," Proc.-Winter Simul. Conf., pp. 3189-3200, 2009.
  16. S. M. Nam and T. H. Cho, "Modeling and Simulation of Threshold Analysis for PVFS in Wireless Sensor Networks," Int. J. Res. - GRANTHAALAYAH(IJRG), Vol. 4, No. 8, pp. 1-9, 2016.
  17. Sung-Won Na, Seung-Kwon Choi, Tae-Woo Lee, Yong-Hwan Cho, "Clustering Algorithm for Efficient Energy Consumption in Wireless Sensor Networks," Journal of the Korea Society of Computer and Information, Vol. 19, No. 6, pp. 49-59, 2014. https://doi.org/10.9708/jksci.2014.19.6.049
  18. Sun-Chol Kim, Seung-Kwon Choi, Yong-Hwan Cho, "Clustering Algorithm for Extending Lifetime of Wireless Sensor Networks," Journal of the Korea Society of Computer and Information 20(4), pp. 77-85, 2015. https://doi.org/10.9708/jksci.2015.20.4.077
  19. K. Akkaya and M. Younis, "A survey on routing protocols for wireless sensor networks," Ad Hoc Networks, Vol. 3, No. 3, pp. 325-349, 2005. https://doi.org/10.1016/j.adhoc.2003.09.010
  20. B. P. Zeigler, T. H. Cho, and J. W. Rozenblit, "A knowledge-based simulation environment for hierarchical flexible manufacturing," IEEE Trans. Syst. Man, Cybern. Part ASystems Humans., Vol. 26, No. 1, pp. 81-90, 1996. https://doi.org/10.1109/3468.477862
  21. Microsoft Tech Community, "Performance Monitor for Windows," https://techcommunity.microsoft.com/t5/ask-the-performance-team/windows-performance-monitor-overview/ba-p/375481