References
- D. Xin, L. Ma, J. Liu, S. Macke, S. Song, "Helix: Holistic optimization for accelerating iterative machine learning," Proceedings of the VLDB Endowment, pp. 446-460, Dec. 2018.
- S. D. Nunes, P. Zhang, J. S. Silva, "A survey on human-in-the-loop applications towards an internet of all," IEEE Communications Surveys & Tutorials, 17(2), pp. 944-965, Feb. 2015. DOI:10.1109/COMST.2015.2398816
- C. Xue, J. Yan, R. Yan, S. M. Chu, Y. Hu, Y. Lin, "Transferable AutoML by Model Sharing Over Grouped Datasets," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9002-9011, June. 2019. DOI:10.1109/CVPR.2019.00921
- M. Terry, D. Sculley, N. Hynes, "The Data Linter: Lightweight, Automated Sanity Checking for ML Data Sets," Machine Learning Systems Workshop at NIPS. 2017.
- Y. Roh, G. Heo, and S. E. Whang, "A survey on data collection for machine learning: a big data - ai integration perspective," IEEE Tran. on Knowledge and Data Engineering, June. 2019. DOI:10.1109/TKDE.2019.2946162
- Rekatsinas, Theodoros, et al. "Holoclean: Holistic data repairs with probabilistic inference," arXiv preprint arXiv:1702.00820, Feb. 2017.
- S. Krishnan, J. Wang, E. Wu, M. Franklin, J, K. Goldberg, "Activeclean : Interactive data cleaning for statistical modeling," Proceedings of the VLDB Endowment, 9, pp. 948-959, Aug. 2016. https://doi.org/10.14778/2994509.2994514
- Krishnan, Sanjay, et al. "Boostclean: Automated error detection and repair for machine learning," arXiv preprint arXiv:1711.01299, Nov. 2017.
- K. H. Tae, Y. Roh, Y. H. Oh, H. Kim, & S. E. Whang, "Data cleaning for accurate, fair, and robust models: A big data-AI integration approach," In Proceedings of the 3rd International Workshop on Data Management for End-to-End Machine Learning, pp. 1-4, June. 2019.
- M. Dolatshah, M. Teoh, J. Wang, and J. Pei, "Cleaning crowdsourced labels using oracles for statistical classification," Proceedings of the VLDB Endowment, Vol. 12, pp. 376-389, Dec. 2018. https://doi.org/10.14778/3297753.3297758
- Mahmoud Ghofrani and Musaad Alolayan, "Time Series and Renewable Energy Forecasting," intechopen, Dec. 2017. DOI:10.5772/intechopen.70845
- K. Bandara, C. Bergmeir, S. Smyl, "Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach," Expert Systems with Applications, Vol. 140, Feb. 2020.
- Won-chang Lee, Jae-Han Cho and LeeSub Lee, "Time Series Abnormal Data Detection for Smart Factory," International Journal of Control and Automation, Vol. 11, No. 1, pp. 91-98, Jan. 2018. https://doi.org/10.14257/ijca.2018.11.1.08
- J. Zaldivar, C. T. Calafate, J. C. Cano, and P. Manzoni, "Providing accident detection in vehicular networks through OBD-II devices and Android-based smartphones," IEEE Trans. on Local Computer Networks, pp. 813-819, Oct. 2011.
- Smith, H. Ben, Laurie Williams, "On guiding the augmentation of an automated test suite via mutation analysis," Empirical software engineering, pp. 341-369, June. 2009. https://doi.org/10.1007/s10664-008-9083-7
- L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, Y. Wang, "Deepmutation: Mutation testing of deep learning systems," IEEE Trans. on Software Reliability Engineering, pp. 100-111, Oct. 2018.
- C. Finn, S. Levine, P. Abbeel, "Guided cost learning: Deep inverse optimal control via policy optimization," In International conference on machine learning, pp. 49-58, June. 2016.
- F. P. Luus, B. P. Salmon, F. Van den Bergh, B. T. J. Maharaj, "Multiview deep learning for land-use classification," IEEE Geoscience and Remote Sensing Letters, pp. 2448-2452, Oct. 2015.