References
- Jiao, J. Y., Wei, Y. P., Li, H. L., Liu, Y., Jiang, F., Song, M. X., & Tan, S. L. "A gas regulator fault detecting method based on acoustic emission technology." IEEE In 2017 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications(SPA WDA), pp. 91-94, 2017, October. doi:10.1109/spawda.2017.8340295
- Tian, S., Bian, X., Tang, Z., Yang, K., & Li, L. "Fault Diagnosis of Gas Pressure Regulators Based on CEEMDAN and Feature Clustering", IEEE Access, Vol. 7, pp. 132492-132502, 2019. doi:10.1109/access.2019.2941497
- Ishigaki, T., Higuchi, T., & Watanabe, K. "Spectrum Classification for Early Fault Diagnosis of the LP Gas Pressure Regulator Based on the Kullback-Leibler Kernel." 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, Arlington, VA, pp. 453-458, 2006, doi:10.1109/mlsp.2006.275593
- Heo G. "Context Dependent Fusion with Support Vector Machines." Journal of The Korea Society of Computer and Information, Vol. 18, No. 7, pp. 37-45, 2013. doi:10.9708/jksci.2013.18.7.037
- Layouni, M., Hamdi, M. S., & Tahar, S. "Detection and sizing of metal-loss defects in oil and gas pipelines using pattern-adapted wavelets and machine learning." Applied Soft Computing, Vol. 52, pp. 247-261, 2017. doi:10.1016/j.asoc.2016.10.040
- Mohamed, A., Hamdi, M. S., & Tahar, S. "A machine learning approach for big data in oil and gas pipelines." IEEE, In 2015 3rd International Conference on Future Internet of Things and Cloud, pp. 585-590, 2015, August. doi:10.1109/ficloud.2015.54
- Akram, N. A., Isa, D., Rajkumar, R., & Lee, L. H. "Active incremental Support Vector Machine for oil and gas pipeline defects prediction system using long range ultrasonic transducers." Ultrasonics, Vol. 54, No. 6, pp. 1534-1544, 2014. doi:10.1016/j.ultras.2014.03.017
- Lee, L. H., Rajkumar, R., Lo, L. H., Wan, C. H., & Isa, D. "Oil and gas pipeline failure prediction system using long range ultrasonic transducers and Euclidean-Support Vector Machines classification approach." Expert Systems with Applications, Vol. 40, No. 6, pp. 1925-1934, 2013. doi:10.1016/j.eswa.2012.10.006
- Yeo, D., Bae, J. H., & Lee, J. C. "Unsupervised Learning-Based Pipe Leak Detection using Deep Auto-Encoder." Journal of the Korea Society of Computer and Information, Vol. 24, No. 9, pp. 21-27, 2019. doi:10.9708/JKSCI.2019.24.09.021
- Chung, W. H., Park, G., Gu, Y. H., Kim, S., & Yoo, S. J. "City Gas Pipeline Pressure Prediction Model." Journal of Society for e-Business Studies, Vol. 23, No. 2, 2019. doi:10.7838/JSEBS.2018.23.2.033
- Kim, J., Kim, H., Jang, K., Lee, J., and Moon, Y. "Object Classification Method Using Dynamic Random Forests and Genetic Optimization." Journal of the Korea Society of Computer and Information, Vol. 21, No. 5, pp. 79-89, 2016. doi:10.9708 /jksci.2016.21.5.079 https://doi.org/10.9708/jksci.2016.21.5.079
- Hochreiter, S., & Schmidhuber, J. "Long short-term memory." Neural computation, Vol. 9, No. 8, pp. 1735-1780, 1997. doi:10.1162/neco.1997.9.8.1735
- Wang, G., Shin, S. Y., & Lee, W. J. "A Text Sentiment Classification Method Based on LSTM-CNN." Journal of The Korea Society of Computer and Information, Vol. 24, No. 12, pp. 1-7, 2019. doi:10.1049/cje.2018.11.004
- Chen, T., & Guestrin, C. "Xgboost: A scalable tree boosting system." In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794, 2016. doi:10.1145/2939672.2939785
- Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY. "Lightgbm: A highly efficient gradient boosting decision tree." In Advances in neural information processing systems, pp. 3146-3154, 2017. doi:10.1109/iccse.2019.8845529
- Ince, T., Kiranyaz, S., Eren, L., Askar, M., & Gabbouj, M. "Real-time motor fault detection by 1-D convolutional neural networks." IEEE Transactions on Industrial Electronics, Vol. 63, No. 11, pp. 7067-7075, 2016. doi:10.1109/tie.2016.2582729
- Mukhopadhyay, R., Panigrahy, P. S., Misra, G., & Chattopadhyay, P. "Quasi 1D CNN-based Fault Diagnosis of Induction Motor Drives." IEEE In 2018 5th International Conference on Electric Power and Energy Conversion Systems (EPECS), pp. 1-5, 2018, April. doi:10.1109/epecs.2018.8443552
- Jain, A., Nandakumar, K., & Ross, A. "Score normalization in multimodal biometric systems." Pattern recognition, Vol. 38, No. 12, pp. 2270-2285, 2005. doi:10.1016/j.patcog.2005.01.012
- Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. "SMOTE: synthetic minority over-sampling technique." Journal of artificial intelligence research, Vol. 16, pp. 321-357, 2002. doi:10.1613/jair.953