참고문헌
- Agah, M.R. (2015), "Material characterization of aortic tissue for traumatic injury and buckling", Ph.D. Dissertation; Temple University, PA, USA.
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mech., 224(9), 2185-2201. https://doi.org/10.1007/s00707-013-0883-5
- Akgoz, B. and Civalek, O. (2014), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20(4), 606-616. https://doi.org/10.1177%2F1077546312463752 https://doi.org/10.1177/1077546312463752
- Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronaut., 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021
- Akgoz, B. and Civalek, O. (2017a), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024
- Akgoz, B. and Civalek, O. (2017b), "A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation", Compos. Struct., 176, 1028-1038. https://doi.org/10.1016/j.compstruct.2017.06.039
- Akgoz, B. and Civalek, O. (2017c), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024
- ANSYS(R) Academic Research Mechanical.
- Bendaho, B., Belabed, Z., Bourada, M., Benatta, M.A., Bourada, F. and Tounsi, A. (2019), "Assessment of new 2D and quasi-3D nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates", Adv. Nano Res., Int. J., 7(4), 277-292. https://doi.org/10.12989/anr.2019.7.4.277
- Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351
- Bertrand, S., Cuny, S., Petit, P., Trosseille, X., Page, Y., Guillemot, H. and Drazetic, P. (2008), "Traumatic rupture of thoracic aorta in real-world motor vehicle crashes", Traffic Inj. Prev., 9(2), 153-161. https://doi.org/10.1080/15389580701775777
- Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. DOI: https://doi.org/10.12989/anr.2018.6.2.147
- Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.191
- Civalek, O. and Demir, C. (2011a), "Buckling and bending analyses of cantilever carbon nanotubes using the euler-bernoulli beam theory based on non-local continuum model", Asian J. Civil Eng., 12(5), 651-661.
- Civalek, O. and Demir, C. (2011b), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
- Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034
- Civalek, O. and Kiracioglu, O. (2010), "Free vibration analysis of Timoshenko beams by DSC method", Int. J. Num. Method. Biomed. Eng., 26(12), 1890-1898. https://doi.org/10.1002/cnm.1279
- De Garis, C.F., Black, I.H. and Riemenschneider, E.A. (1933), "Patterns of the Aortic Arch in American White and Negro Stocks, with Comparative Notes on Certain Other Mammals", J. Anat., 67, 599-619.
- Demir, C. and Civalek, O. (2013), "Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models", Appl. Math. Model., 37(22), 9355-9367. https://doi.org/10.1016/j.apm.2013.04.050
- Demir, C. and Civalek, O. (2017a), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016
- Demir, C. and Civalek, O. (2017b), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos. Struct., 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091
- Demir, C., Akgoz, B., Erdinc, M.C., Mercan, K. and Civalek, O. (2017), "Free vibration analysis of graphene sheets on elastic matrix", J. Fac. Eng. Archit. Gazi Univ., 32(2), 551-562. https://dx.doi.org/10.17341/gummfd.61874
- Ebrahimi, F. and Barati, M.R. (2016), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 451. https://doi.org/10.1007/s00339-016-0001-3
- Ebrahimi, F. and Barati, M.R. (2017), "Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 924-936. https://doi.org/10.1080/15376494.2016.1196795
- Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magnetoelectrical field in thermal environment", J. Vib. Control, 24(3), 549-564. https://doi.org/10.1177%2F1077546316646239 https://doi.org/10.1177/1077546316646239
- Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24(10), 820-829. https://doi.org/10.1080/15376494.2016.1196786
- Ebrahimi, F. and Hosseini, S.H.S. (2016), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
- Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 9561504. https://doi.org/10.1155/2016/9561504
- Ebrahimi, F. and Salari, E. (2015), "Size-dependent thermoelectrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
- Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397. https://doi.org/10.1080/15376494.2015.1091524
- Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stress., 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
- Ebrahimi, F., Babaei, R. and Shaghaghi, G.R. (2018), "Vibration analysis thermally affected viscoelastic nanosensors subjected to linear varying loads", Adv. Nano Res., Int. J., 6(4), 399-422. https://doi.org/10.12989/anr.2018.6.4.399
- Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., Int. J., 7(4), 221-231. https://doi.org/10.12989/anr.2019.7.4.221
- Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2017), "Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates", Compos. Part B: Eng., 115, 384-408. https://doi.org/10.1016/j.compositesb.2016.09.021
- Fung, Y.C., Fronek, K. and Patitucci, P. (1979), "Pseudoelasticity of arteries and the choice of its mathematical expression", Am. J. Physiol. Heart and Circ. Physiol., 237(5), H620-H631. https://doi.org/10.1152/ajpheart.1979.237.5.H620
- Gammie, J.S., Shah, A.S., Hattler, B.G., Kormos, R.L., Peitzman, A.B., Griffith, B.P. and Pham, S.M. (1998), "Traumatic aortic rupture: diagnosis and management", Ann. Thorac. Surg., 66(4), 1295-1300. https://doi.org/10.1016/S0003-4975(98)00778-4
- Garcia, J.R., Lamm, S.D. and Han, H.C. (2013), "Twist buckling behavior of arteries", Biomech. Model. Mechanobiol., 12(5), 915-927. https://doi.org/10.1007/s10237-012-0453-0
- Garcia, J.R., Sanyal, A., Fatemifar, F., Mottahedi, M. and Han, H.C. (2017), "Twist buckling of veins under torsional loading", J. Biomech., 58, 123-130. https://doi.org/10.1016/j.jbiomech.2017.04.018
- Gore, R.W. (1974), "Pressures in cat mesenteric arterioles and capillaries during changes in systemic arterial blood pressure", Circ. Res., 34, 581-591. https://doi.org/10.1161/01.RES.34.4.581
- Gore, R.W. and Bohlen, H. (1975), "Pressure regulation in the microcirculation", Fed. Proceed., 34(11), 2031-2037.
- Han, H.C. (2007), "A biomechanical model of artery buckling", J. Biomech., 40(16), 3672-3678. https://doi.org/10.1016/j.jbiomech.2007.06.018
- Han, H.C. (2009a), "The mechanical buckling of curved arteries", Mol. Cell. Biomech., 6(2), 93-99. http://test.techscience.com/mcb/v6n2/28480
- Han, H.C. (2009b), "The theoretical foundation for artery buckling under internal pressure", J. Biomech. Eng., 131(12), 124501. https://doi.org/10.1115/1.4000080
- Han, H.C., Chesnutt, J.K., Garcia, J.R., Liu, Q. and Wen, Q. (2013), "Artery buckling: new phenotypes, models, and applications", Ann. Biomed. Eng., 41(7), 1399-1410. https://doi.org/10.1007/s10439-012-0707-0
- Hayman, D.M., Zhang, J., Liu, Q., Xiao, Y. and Han, H.C. (2013), "Smooth muscle cell contraction increases the critical buckling pressure of arteries", J. Biomech., 46(4), 841-844. https://doi.org/10.1016/j.jbiomech.2012.11.040
- Humphrey, J., Kang, T., Sakarda, P. and Anjanappa, M. (1993), "Computer-aided vascular experimentation: a new electromechanical test system", Ann. Biomed. Eng., 21(1), 33-43. https://doi.org/10.1007/BF02368162
- Jainandunsing, J.S., Linnemann, R., Bouma, W., Natour, N., Bidar, E., Lorusso, R., Gelsomino, S., Johnson, D.M. and Natour, E. (2019), "Aorto-atrial fistula formation and closure: a systematic review", J. Thorac. Dis., 11, 1031-1046. https://dx.doi.org/10.21037%2Fjtd.2019.01.7 https://doi.org/10.21037/jtd.2019.01.77
- Jalaei, M.H. and Arani, A.G. (2018), "Size-dependent static and dynamic responses of embedded double-layered graphene sheets under longitudinal magnetic field with arbitrary boundary conditions", Compos. Part B: Eng., 142, 117-130. https://doi.org/10.1016/j.compositesb.2017.12.053
- Jalaei, M.H. and Thai, H.T. (2019), "Dynamic stability of viscoelastic porous FG nanoplate under longitudinal magnetic field via a nonlocal strain gradient quasi-3D theory", Compos. Part B: Eng., 175, 107164. https://doi.org/10.1016/j.compositesb.2019.107164
- Jalaei, M.H., Arani, A.G. and Tourang, H. (2018), "On the dynamic stability of viscoelastic graphene sheets", Int. J Eng. Sci., 132, 16-29. https://doi.org/10.1016/j.ijengsci.2018.07.002
- Jalaei, M.H., Arani, A.G. and Nguyen-Xuan, H. (2019), "Investigation of thermal and magnetic field effects on the dynamic instability of FG Timoshenko nanobeam employing nonlocal strain gradient theory", Int. J. Mech. Sci., 161, 105043. https://doi.org/10.1016/j.ijmecsci.2019.105043
- Jezkova, K., Rathouska, J., Nemeckova, I., Fikrova, P., Dolezelova, E., Varejckova, M., Vitverova, B., Bernabeu, C., Novoa, J.M., Chlopicki, S. and Nachtigal, P. (2016), "Vascular Biology: Endothelium and Smooth Muscle Cells. High Levels of Soluble Endoglin Induce Inflammation and Oxidative Stress in Aorta Compensated with Preserved No-Dependent Vasodilatation Mice Fed High Fat Diet", Atheroscler., 252, E160-E160. https://doi.org/10.1016/j.atherosclerosis.2016.07.771
- Kaniowsk, T., Bross, T., Koltowsk, R., Kustrzyc, A. and Olejak, B. (1970), "Kinking or Buckling of Aorta", Pol. Rev. Radiol. Nucl. Med., 34, 187-+.
- Kheroubi, B., Benzair, A., Tounsi, A. and Semmah, A. (2016), "A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams", Adv. Nano Res., Int. J., 4(4), 251-264. https://doi.org/10.12989/anr.2016.4.4.251
- Kim, J. and Baek, S. (2011), "Circumferential variations of mechanical behavior of the porcine thoracic aorta during the inflation test", J. Biomech., 44(10), 1941-1947. https://doi.org/10.1016/j.jbiomech.2011.04.022
- Lee, W.A., Matsumura, J.S., Mitchell, R.S., Farber, M.A., Greenberg, R.K., Azizzadeh, A., Murad, M.H. and Fairman, R.M. (2011), "Endovascular repair of traumatic thoracic aortic injury: clinical practice guidelines of the Society for Vascular Surgery", J. Vasc. Surg., 53(1), 187-192. https://doi.org/10.1016/j.jvs.2010.08.027
- Levesque, M. and Nerem, R. (1985), "The elongation and orientation of cultured endothelial cells in response to shear stress", J. Biomech. Eng., 107, 341-347. https://doi.org/10.1115/1.3138567
- Levy, B.I. and Tedgui, A. (2007), Biology of the Arterial Wall Vol. 1, Springer Science & Business Media, MA, Boston, USA.
- Lillie, M., Shadwick, R. and Gosline, J. (2010), "Mechanical anisotropy of inflated elastic tissue from the pig aorta", J. Biomech., 43(11), 2070-2078. https://doi.org/10.1016/j.jbiomech.2010.04.014
- Lillie, M., Armstrong, T., Gerard, S., Shadwick, R. and Gosline, J. (2012), "Contribution of elastin and collagen to the inflation response of the pig thoracic aorta: assessing elastin's role in mechanical homeostasis", J. Biomech., 45(12), 2133-2141. https://doi.org/10.1016/j.jbiomech.2012.05.034
- Liu, Q. and Han, H.C. (2012), "Mechanical buckling of artery under pulsatile pressure", J. Biomech., 45(7), 1192-1198. https://doi.org/10.1016/j.jbiomech.2012.01.035
- Liu, Q., Wen, Q., Mottahedi, M. and Han, H.C. (2014), "Artery buckling analysis using a four-fiber wall model", J. Biomech., 47(11), 2790-2796. https://doi.org/10.1016/j.jbiomech.2014.06.005
- Martinez, R., Fierro, C.A., Shireman, P.K. and Han, H.C. (2010), "Mechanical Buckling of Veins Under Internal Pressure", Ann. Biomed. Eng., 38(4), 1345-1353. https://doi.org/10.1007/s10439-010-9929-1
- Mercan, K. and Civalek, O. (2017), "Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ", Compos. Part B: Eng., 114, 34-45. https://doi.org/10.1016/j.compositesb.2017.01.067
- Mulvany, M. and Aalkjaer, C. (1990), "Structure and function of small arteries", Physiol. Rev., 70, 921-961. https://doi.org/10.1152/physrev.1990.70.4.921
- Numanoglu, H.M., Akgoz, B. and Civalek, O. (2018), "On dynamic analysis of nanorods", Int. J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001
- Presley, R. (1979), "The primitive course of the internal carotid artery in mammals", Cell. Tissue. Organ., 103(2), 238-244. https://doi.org/10.1159/000145015
- Rachev, A.A. (2009), "Theoretical study of mechanical stability of arteries", J. Biomech. Eng., 131(5), 051006. https://doi.org/10.1115/1.3078188
- Richens, D., Kotidis, K., Neale, M., Oakley, C. and Fails, A. (2003), "Rupture of the aorta following road traffic accidents in the United Kingdom 1992-1999. The results of the co-operative crash injury study", Eur. J. Cardiothorac. Surg., 23(2), 143-148. https://doi.org/10.1016/S1010-7940(02)00720-0
- Sahmani, S. and Fattahi, A.M.B. (2018), "Development of efficient size-dependent plate models for axial buckling of single-layered graphene nanosheets using molecular dynamics simulation", Microsyst. Technol., 24, 1265-1277. https://doi.org/10.1007/s00542-017-3497-3
- Sahmani, S. and Safaei, B. (2019), "Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects", Thin-Wall. Struct., 140, 342-356. https://doi.org/10.1016/j.tws.2019.03.045
- Schembri, P., Crane, D.L. and Reddy, J.N. (2004), "A threedimensional computational procedure for reproducing meshless methods and the finite element method", Int. J. Numer. Method. Eng., 61(6), 896-927. https://doi.org/10.1002/nme.1095
- Schulze-Bauer, C.A., Morth, C. and Holzapfel, G.A. (2003), "Passive biaxial mechanical response of aged human iliac arteries", J. Biomech. Eng., 125(3), 395-406. https://doi.org/10.1115/1.1574331
- Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by nonlocal FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089
- Smyth, P.T. and Edwards, J.E. (1972), "Pseudocoarctation, kinking or buckling of the aorta", Circ., 46(5), 1027-1032. https://doi.org/10.1161/01.CIR.46.5.1027
- Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Dimitri, R. (2015a), "Dynamic analysis of thick and thin elliptic shell structures made of laminated composite materials", Compos. Struct., 133, 278-299. https://doi.org/10.1016/j.compstruct.2015.06.052
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2015b), "Higher-order theories for the free vibrations of doubly-curved laminated panels with curvilinear reinforcing fibers by means of a local version of the GDQ method", Compos. Part B: Eng., 81, 196-230. https://doi.org/10.1016/j.compositesb.2015.07.012
- Williams, J.S., Graff, J.A., Uku, J.M. and Steinig, J.P. (1994), "Aortic injury in vehicular trauma", Ann. Thorac. Surg., 57(3), 726-730. https://doi.org/10.1016/0003-4975(94)90576-2
- Youcef, D.O., Kaci, A., Houari, M.S.A., Tounsi, A., Benzair, A. and Heireche, H. (2015), "On the bending and stability of nanowire using various HSDTs", Adv. Nano Res., Int. J., 3(4), 177-191. https://doi.org/10.12989/anr.2015.3.4.177
- Zhang, J., Liu, Q. and Han, H.C. (2014), "An in vivo rat model of artery buckling for studying wall remodeling", Ann. Biomed. Eng., 42(8), 1658-1667. https://doi.org/10.1007/s10439-014-1017-5