DOI QR코드

DOI QR Code

Post-buckling analysis of aorta artery under axial compression loads

  • Akbas, Seref Doguscan (Bursa Technical University, Department of Civil Engineering, Yildirim Campus) ;
  • Mercan, Kadir (Mehmet Akif Ersoy University, Faculty of Engineering-Architecture, Civil Engineering Department, Division of Mechanics) ;
  • Civalek, Omer (China Medical University)
  • Received : 2019.10.19
  • Accepted : 2020.04.19
  • Published : 2020.04.25

Abstract

Buckling and post-buckling cases are often occurred in aorta artery because it affected by higher pressure. Also, its stability has a vital importance to humans and animals. The loss of stability in arteries may lead to arterial tortuosity and kinking. In this paper, post-buckling analysis of aorta artery is investigated under axial compression loads on the basis of Euler-Bernoulli beam theory by using finite element method. It is known that post-buckling problems are geometrically nonlinear problems. In the geometrically nonlinear model, the Von Karman nonlinear kinematic relationship is employed. Two types of support conditions for the aorta artery are considered. The considered non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The aorta artery is modeled as a cylindrical tube with different average diameters. In the numerical results, the effects of the geometry parameters of aorta artery on the post-buckling case are investigated in detail. Nonlinear deflections and critical buckling loads are obtained and discussed on the post-buckling case.

Keywords

References

  1. Agah, M.R. (2015), "Material characterization of aortic tissue for traumatic injury and buckling", Ph.D. Dissertation; Temple University, PA, USA.
  2. Akgoz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mech., 224(9), 2185-2201. https://doi.org/10.1007/s00707-013-0883-5
  3. Akgoz, B. and Civalek, O. (2014), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20(4), 606-616. https://doi.org/10.1177%2F1077546312463752 https://doi.org/10.1177/1077546312463752
  4. Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronaut., 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021
  5. Akgoz, B. and Civalek, O. (2017a), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024
  6. Akgoz, B. and Civalek, O. (2017b), "A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation", Compos. Struct., 176, 1028-1038. https://doi.org/10.1016/j.compstruct.2017.06.039
  7. Akgoz, B. and Civalek, O. (2017c), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024
  8. ANSYS(R) Academic Research Mechanical.
  9. Bendaho, B., Belabed, Z., Bourada, M., Benatta, M.A., Bourada, F. and Tounsi, A. (2019), "Assessment of new 2D and quasi-3D nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates", Adv. Nano Res., Int. J., 7(4), 277-292. https://doi.org/10.12989/anr.2019.7.4.277
  10. Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351
  11. Bertrand, S., Cuny, S., Petit, P., Trosseille, X., Page, Y., Guillemot, H. and Drazetic, P. (2008), "Traumatic rupture of thoracic aorta in real-world motor vehicle crashes", Traffic Inj. Prev., 9(2), 153-161. https://doi.org/10.1080/15389580701775777
  12. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. DOI: https://doi.org/10.12989/anr.2018.6.2.147
  13. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.191
  14. Civalek, O. and Demir, C. (2011a), "Buckling and bending analyses of cantilever carbon nanotubes using the euler-bernoulli beam theory based on non-local continuum model", Asian J. Civil Eng., 12(5), 651-661.
  15. Civalek, O. and Demir, C. (2011b), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
  16. Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034
  17. Civalek, O. and Kiracioglu, O. (2010), "Free vibration analysis of Timoshenko beams by DSC method", Int. J. Num. Method. Biomed. Eng., 26(12), 1890-1898. https://doi.org/10.1002/cnm.1279
  18. De Garis, C.F., Black, I.H. and Riemenschneider, E.A. (1933), "Patterns of the Aortic Arch in American White and Negro Stocks, with Comparative Notes on Certain Other Mammals", J. Anat., 67, 599-619.
  19. Demir, C. and Civalek, O. (2013), "Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models", Appl. Math. Model., 37(22), 9355-9367. https://doi.org/10.1016/j.apm.2013.04.050
  20. Demir, C. and Civalek, O. (2017a), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016
  21. Demir, C. and Civalek, O. (2017b), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos. Struct., 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091
  22. Demir, C., Akgoz, B., Erdinc, M.C., Mercan, K. and Civalek, O. (2017), "Free vibration analysis of graphene sheets on elastic matrix", J. Fac. Eng. Archit. Gazi Univ., 32(2), 551-562. https://dx.doi.org/10.17341/gummfd.61874
  23. Ebrahimi, F. and Barati, M.R. (2016), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 451. https://doi.org/10.1007/s00339-016-0001-3
  24. Ebrahimi, F. and Barati, M.R. (2017), "Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 924-936. https://doi.org/10.1080/15376494.2016.1196795
  25. Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magnetoelectrical field in thermal environment", J. Vib. Control, 24(3), 549-564. https://doi.org/10.1177%2F1077546316646239 https://doi.org/10.1177/1077546316646239
  26. Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24(10), 820-829. https://doi.org/10.1080/15376494.2016.1196786
  27. Ebrahimi, F. and Hosseini, S.H.S. (2016), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
  28. Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 9561504. https://doi.org/10.1155/2016/9561504
  29. Ebrahimi, F. and Salari, E. (2015), "Size-dependent thermoelectrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
  30. Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397. https://doi.org/10.1080/15376494.2015.1091524
  31. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stress., 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
  32. Ebrahimi, F., Babaei, R. and Shaghaghi, G.R. (2018), "Vibration analysis thermally affected viscoelastic nanosensors subjected to linear varying loads", Adv. Nano Res., Int. J., 6(4), 399-422. https://doi.org/10.12989/anr.2018.6.4.399
  33. Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., Int. J., 7(4), 221-231. https://doi.org/10.12989/anr.2019.7.4.221
  34. Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2017), "Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates", Compos. Part B: Eng., 115, 384-408. https://doi.org/10.1016/j.compositesb.2016.09.021
  35. Fung, Y.C., Fronek, K. and Patitucci, P. (1979), "Pseudoelasticity of arteries and the choice of its mathematical expression", Am. J. Physiol. Heart and Circ. Physiol., 237(5), H620-H631. https://doi.org/10.1152/ajpheart.1979.237.5.H620
  36. Gammie, J.S., Shah, A.S., Hattler, B.G., Kormos, R.L., Peitzman, A.B., Griffith, B.P. and Pham, S.M. (1998), "Traumatic aortic rupture: diagnosis and management", Ann. Thorac. Surg., 66(4), 1295-1300. https://doi.org/10.1016/S0003-4975(98)00778-4
  37. Garcia, J.R., Lamm, S.D. and Han, H.C. (2013), "Twist buckling behavior of arteries", Biomech. Model. Mechanobiol., 12(5), 915-927. https://doi.org/10.1007/s10237-012-0453-0
  38. Garcia, J.R., Sanyal, A., Fatemifar, F., Mottahedi, M. and Han, H.C. (2017), "Twist buckling of veins under torsional loading", J. Biomech., 58, 123-130. https://doi.org/10.1016/j.jbiomech.2017.04.018
  39. Gore, R.W. (1974), "Pressures in cat mesenteric arterioles and capillaries during changes in systemic arterial blood pressure", Circ. Res., 34, 581-591. https://doi.org/10.1161/01.RES.34.4.581
  40. Gore, R.W. and Bohlen, H. (1975), "Pressure regulation in the microcirculation", Fed. Proceed., 34(11), 2031-2037.
  41. Han, H.C. (2007), "A biomechanical model of artery buckling", J. Biomech., 40(16), 3672-3678. https://doi.org/10.1016/j.jbiomech.2007.06.018
  42. Han, H.C. (2009a), "The mechanical buckling of curved arteries", Mol. Cell. Biomech., 6(2), 93-99. http://test.techscience.com/mcb/v6n2/28480
  43. Han, H.C. (2009b), "The theoretical foundation for artery buckling under internal pressure", J. Biomech. Eng., 131(12), 124501. https://doi.org/10.1115/1.4000080
  44. Han, H.C., Chesnutt, J.K., Garcia, J.R., Liu, Q. and Wen, Q. (2013), "Artery buckling: new phenotypes, models, and applications", Ann. Biomed. Eng., 41(7), 1399-1410. https://doi.org/10.1007/s10439-012-0707-0
  45. Hayman, D.M., Zhang, J., Liu, Q., Xiao, Y. and Han, H.C. (2013), "Smooth muscle cell contraction increases the critical buckling pressure of arteries", J. Biomech., 46(4), 841-844. https://doi.org/10.1016/j.jbiomech.2012.11.040
  46. Humphrey, J., Kang, T., Sakarda, P. and Anjanappa, M. (1993), "Computer-aided vascular experimentation: a new electromechanical test system", Ann. Biomed. Eng., 21(1), 33-43. https://doi.org/10.1007/BF02368162
  47. Jainandunsing, J.S., Linnemann, R., Bouma, W., Natour, N., Bidar, E., Lorusso, R., Gelsomino, S., Johnson, D.M. and Natour, E. (2019), "Aorto-atrial fistula formation and closure: a systematic review", J. Thorac. Dis., 11, 1031-1046. https://dx.doi.org/10.21037%2Fjtd.2019.01.7 https://doi.org/10.21037/jtd.2019.01.77
  48. Jalaei, M.H. and Arani, A.G. (2018), "Size-dependent static and dynamic responses of embedded double-layered graphene sheets under longitudinal magnetic field with arbitrary boundary conditions", Compos. Part B: Eng., 142, 117-130. https://doi.org/10.1016/j.compositesb.2017.12.053
  49. Jalaei, M.H. and Thai, H.T. (2019), "Dynamic stability of viscoelastic porous FG nanoplate under longitudinal magnetic field via a nonlocal strain gradient quasi-3D theory", Compos. Part B: Eng., 175, 107164. https://doi.org/10.1016/j.compositesb.2019.107164
  50. Jalaei, M.H., Arani, A.G. and Tourang, H. (2018), "On the dynamic stability of viscoelastic graphene sheets", Int. J Eng. Sci., 132, 16-29. https://doi.org/10.1016/j.ijengsci.2018.07.002
  51. Jalaei, M.H., Arani, A.G. and Nguyen-Xuan, H. (2019), "Investigation of thermal and magnetic field effects on the dynamic instability of FG Timoshenko nanobeam employing nonlocal strain gradient theory", Int. J. Mech. Sci., 161, 105043. https://doi.org/10.1016/j.ijmecsci.2019.105043
  52. Jezkova, K., Rathouska, J., Nemeckova, I., Fikrova, P., Dolezelova, E., Varejckova, M., Vitverova, B., Bernabeu, C., Novoa, J.M., Chlopicki, S. and Nachtigal, P. (2016), "Vascular Biology: Endothelium and Smooth Muscle Cells. High Levels of Soluble Endoglin Induce Inflammation and Oxidative Stress in Aorta Compensated with Preserved No-Dependent Vasodilatation Mice Fed High Fat Diet", Atheroscler., 252, E160-E160. https://doi.org/10.1016/j.atherosclerosis.2016.07.771
  53. Kaniowsk, T., Bross, T., Koltowsk, R., Kustrzyc, A. and Olejak, B. (1970), "Kinking or Buckling of Aorta", Pol. Rev. Radiol. Nucl. Med., 34, 187-+.
  54. Kheroubi, B., Benzair, A., Tounsi, A. and Semmah, A. (2016), "A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams", Adv. Nano Res., Int. J., 4(4), 251-264. https://doi.org/10.12989/anr.2016.4.4.251
  55. Kim, J. and Baek, S. (2011), "Circumferential variations of mechanical behavior of the porcine thoracic aorta during the inflation test", J. Biomech., 44(10), 1941-1947. https://doi.org/10.1016/j.jbiomech.2011.04.022
  56. Lee, W.A., Matsumura, J.S., Mitchell, R.S., Farber, M.A., Greenberg, R.K., Azizzadeh, A., Murad, M.H. and Fairman, R.M. (2011), "Endovascular repair of traumatic thoracic aortic injury: clinical practice guidelines of the Society for Vascular Surgery", J. Vasc. Surg., 53(1), 187-192. https://doi.org/10.1016/j.jvs.2010.08.027
  57. Levesque, M. and Nerem, R. (1985), "The elongation and orientation of cultured endothelial cells in response to shear stress", J. Biomech. Eng., 107, 341-347. https://doi.org/10.1115/1.3138567
  58. Levy, B.I. and Tedgui, A. (2007), Biology of the Arterial Wall Vol. 1, Springer Science & Business Media, MA, Boston, USA.
  59. Lillie, M., Shadwick, R. and Gosline, J. (2010), "Mechanical anisotropy of inflated elastic tissue from the pig aorta", J. Biomech., 43(11), 2070-2078. https://doi.org/10.1016/j.jbiomech.2010.04.014
  60. Lillie, M., Armstrong, T., Gerard, S., Shadwick, R. and Gosline, J. (2012), "Contribution of elastin and collagen to the inflation response of the pig thoracic aorta: assessing elastin's role in mechanical homeostasis", J. Biomech., 45(12), 2133-2141. https://doi.org/10.1016/j.jbiomech.2012.05.034
  61. Liu, Q. and Han, H.C. (2012), "Mechanical buckling of artery under pulsatile pressure", J. Biomech., 45(7), 1192-1198. https://doi.org/10.1016/j.jbiomech.2012.01.035
  62. Liu, Q., Wen, Q., Mottahedi, M. and Han, H.C. (2014), "Artery buckling analysis using a four-fiber wall model", J. Biomech., 47(11), 2790-2796. https://doi.org/10.1016/j.jbiomech.2014.06.005
  63. Martinez, R., Fierro, C.A., Shireman, P.K. and Han, H.C. (2010), "Mechanical Buckling of Veins Under Internal Pressure", Ann. Biomed. Eng., 38(4), 1345-1353. https://doi.org/10.1007/s10439-010-9929-1
  64. Mercan, K. and Civalek, O. (2017), "Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ", Compos. Part B: Eng., 114, 34-45. https://doi.org/10.1016/j.compositesb.2017.01.067
  65. Mulvany, M. and Aalkjaer, C. (1990), "Structure and function of small arteries", Physiol. Rev., 70, 921-961. https://doi.org/10.1152/physrev.1990.70.4.921
  66. Numanoglu, H.M., Akgoz, B. and Civalek, O. (2018), "On dynamic analysis of nanorods", Int. J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001
  67. Presley, R. (1979), "The primitive course of the internal carotid artery in mammals", Cell. Tissue. Organ., 103(2), 238-244. https://doi.org/10.1159/000145015
  68. Rachev, A.A. (2009), "Theoretical study of mechanical stability of arteries", J. Biomech. Eng., 131(5), 051006. https://doi.org/10.1115/1.3078188
  69. Richens, D., Kotidis, K., Neale, M., Oakley, C. and Fails, A. (2003), "Rupture of the aorta following road traffic accidents in the United Kingdom 1992-1999. The results of the co-operative crash injury study", Eur. J. Cardiothorac. Surg., 23(2), 143-148. https://doi.org/10.1016/S1010-7940(02)00720-0
  70. Sahmani, S. and Fattahi, A.M.B. (2018), "Development of efficient size-dependent plate models for axial buckling of single-layered graphene nanosheets using molecular dynamics simulation", Microsyst. Technol., 24, 1265-1277. https://doi.org/10.1007/s00542-017-3497-3
  71. Sahmani, S. and Safaei, B. (2019), "Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects", Thin-Wall. Struct., 140, 342-356. https://doi.org/10.1016/j.tws.2019.03.045
  72. Schembri, P., Crane, D.L. and Reddy, J.N. (2004), "A threedimensional computational procedure for reproducing meshless methods and the finite element method", Int. J. Numer. Method. Eng., 61(6), 896-927. https://doi.org/10.1002/nme.1095
  73. Schulze-Bauer, C.A., Morth, C. and Holzapfel, G.A. (2003), "Passive biaxial mechanical response of aged human iliac arteries", J. Biomech. Eng., 125(3), 395-406. https://doi.org/10.1115/1.1574331
  74. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by nonlocal FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089
  75. Smyth, P.T. and Edwards, J.E. (1972), "Pseudocoarctation, kinking or buckling of the aorta", Circ., 46(5), 1027-1032. https://doi.org/10.1161/01.CIR.46.5.1027
  76. Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096
  77. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Dimitri, R. (2015a), "Dynamic analysis of thick and thin elliptic shell structures made of laminated composite materials", Compos. Struct., 133, 278-299. https://doi.org/10.1016/j.compstruct.2015.06.052
  78. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2015b), "Higher-order theories for the free vibrations of doubly-curved laminated panels with curvilinear reinforcing fibers by means of a local version of the GDQ method", Compos. Part B: Eng., 81, 196-230. https://doi.org/10.1016/j.compositesb.2015.07.012
  79. Williams, J.S., Graff, J.A., Uku, J.M. and Steinig, J.P. (1994), "Aortic injury in vehicular trauma", Ann. Thorac. Surg., 57(3), 726-730. https://doi.org/10.1016/0003-4975(94)90576-2
  80. Youcef, D.O., Kaci, A., Houari, M.S.A., Tounsi, A., Benzair, A. and Heireche, H. (2015), "On the bending and stability of nanowire using various HSDTs", Adv. Nano Res., Int. J., 3(4), 177-191. https://doi.org/10.12989/anr.2015.3.4.177
  81. Zhang, J., Liu, Q. and Han, H.C. (2014), "An in vivo rat model of artery buckling for studying wall remodeling", Ann. Biomed. Eng., 42(8), 1658-1667. https://doi.org/10.1007/s10439-014-1017-5